dc.contributor.author |
Tsitouras, Ch |
en |
dc.date.accessioned |
2014-03-01T01:13:47Z |
|
dc.date.available |
2014-03-01T01:13:47Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0377-0427 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12726 |
|
dc.subject |
second-order ODE |
en |
dc.subject |
dissipation error |
en |
dc.subject |
periodic problems |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Error analysis |
en |
dc.subject.other |
Initial value problems |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Dissipation error |
en |
dc.subject.other |
Periodic problems |
en |
dc.subject.other |
Runge-Kutta-Nystrom method |
en |
dc.subject.other |
Runge Kutta methods |
en |
dc.title |
High-order zero-dissipative Runge-Kutta-Nystrom methods |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0377-0427(98)00081-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0377-0427(98)00081-8 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
A new Runge-Kutta-Nystrom pair of orders eight and six is presented here. Its main advantage is that it is of zero dissipation so it possesses an interval of periodicity. Numerical results over a set of problems demonstrate the superiority of the method in problems with periodic solution. (C) 1998 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
Elsevier Sci B.V., Amsterdam, Netherlands |
en |
heal.journalName |
Journal of Computational and Applied Mathematics |
en |
dc.identifier.doi |
10.1016/S0377-0427(98)00081-8 |
en |
dc.identifier.isi |
ISI:000075711700012 |
en |
dc.identifier.volume |
95 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
157 |
en |
dc.identifier.epage |
161 |
en |