dc.contributor.author |
Kandilakis, DA |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:13:53Z |
|
dc.date.available |
2014-03-01T01:13:53Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
02534142 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12768 |
|
dc.subject |
Compact embedding |
en |
dc.subject |
Evolution triple |
en |
dc.subject |
Integration by parts |
en |
dc.subject |
Lower solution |
en |
dc.subject |
Regular cone |
en |
dc.subject |
Sobolev space |
en |
dc.subject |
Upper solution |
en |
dc.title |
Maximum and minimum solutions for nonlinear parabolic problems with discontinuities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02841551 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02841551 |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In this paper we examine nonlinear parabolic problems with a discontinuous right hand side. Assuming the existence of an upper solution φ and a lower solution ψ such that ψ ≤ φ, we establish the existence of a maximum and a minimum solution in the order interval [ψ, φ]. Our approach does not consider the multivalued interpretation of the problem, but a weak one side ""Lipschitz"" condition on the discontinuous term. By employing a fixed point theorem for nondecreasing maps, we prove the existence of extremal solutions in [ψ, φ] for the original single valued version of the problem. |
en |
heal.journalName |
Proceedings of the Indian Academy of Sciences: Mathematical Sciences |
en |
dc.identifier.doi |
10.1007/BF02841551 |
en |
dc.identifier.volume |
108 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
179 |
en |
dc.identifier.epage |
187 |
en |