HEAL DSpace

Multivariable control of single zone hydronic heating systems with neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kanarachos, A en
dc.contributor.author Geramanis, K en
dc.date.accessioned 2014-03-01T01:13:55Z
dc.date.available 2014-03-01T01:13:55Z
dc.date.issued 1998 en
dc.identifier.issn 0196-8904 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12788
dc.subject Direct temperature control en
dc.subject Energy conservation en
dc.subject Hydronic en
dc.subject Neural networks en
dc.subject.classification Thermodynamics en
dc.subject.classification Energy & Fuels en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Nuclear en
dc.title Multivariable control of single zone hydronic heating systems with neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0196-8904(98)00015-6 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0196-8904(98)00015-6 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract In a hydronic heating system, it is important to control the zone temperature with a certain degree of accuracy. The system consists of a space heating circuit with the ability to modulate both the fuel mass flow of the burner and the mass flow of hot water. The physical model of the system consists of a heating system, a distribution system and an environmental zone which are simulated by an eleventh order nonlinear system. The objective of the controller is to maintain the zone temperature as close as possible to a chosen setpoint and, at the same time, to maintain the temperature of the hot water below a maximum temperature which is usually 90 degrees C. However, there are many problems in designing such a controller due to system uncertainties, saturation of the actuators and long system delay. To overcome the above nonlinearities, an adaptive controller has been designed using neural networks and evaluated with software simulations. Comparisons are made between the RMS of the zone temperature and the energy consumption of the system for a time period of two days by several neural networks with different architectures and learning laws. (C) 1998 Elsevier Science Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Energy Conversion and Management en
dc.identifier.doi 10.1016/S0196-8904(98)00015-6 en
dc.identifier.isi ISI:000074500900002 en
dc.identifier.volume 39 en
dc.identifier.issue 13 en
dc.identifier.spage 1317 en
dc.identifier.epage 1336 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής