dc.contributor.author |
Kandilakis, DA |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:13:56Z |
|
dc.date.available |
2014-03-01T01:13:56Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0013-0915 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12795 |
|
dc.subject |
Parabolic Problem |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
UNIQUENESS |
en |
dc.subject.other |
EQUATIONS |
en |
dc.title |
Nonlinear periodic parabolic problems with nonmonotone discontinuities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1017/S0013091500019453 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1017/S0013091500019453 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In this paper we consider a nonlinear periodic parabolic boundary value problem with a discontinuous nonmonotone nonlinearity. Using a lifting result for operators of type (S+), a general surjectivity theorem for operators of monotone type and an auxiliary problem defined by truncation and penalization we prove the existence of a solution in the order interval formed by an upper and lower solution. Moreover we show that the set of all such solutions is compact in L-p(T, W-0(l,p)(Z)). |
en |
heal.publisher |
OXFORD UNIV PRESS |
en |
heal.journalName |
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY |
en |
dc.identifier.doi |
10.1017/S0013091500019453 |
en |
dc.identifier.isi |
ISI:000072103700007 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.spage |
117 |
en |
dc.identifier.epage |
132 |
en |