dc.contributor.author |
Markakis, M |
en |
dc.contributor.author |
Panayotounakos, DE |
en |
dc.date.accessioned |
2014-03-01T01:13:56Z |
|
dc.date.available |
2014-03-01T01:13:56Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
1024-123X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12796 |
|
dc.subject |
Convergence analysis |
en |
dc.subject |
Right circular cone |
en |
dc.subject |
Unsteady supersonic flow |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Analytical solutions |
en |
dc.subject.other |
Arbitrary functions |
en |
dc.subject.other |
Body of revolution |
en |
dc.subject.other |
Circular cones |
en |
dc.subject.other |
Convergence analysis |
en |
dc.subject.other |
Infinite series |
en |
dc.subject.other |
Initial conditions |
en |
dc.subject.other |
Limiting values |
en |
dc.subject.other |
Series solutions |
en |
dc.subject.other |
Slender bodies |
en |
dc.subject.other |
Small-amplitude oscillations |
en |
dc.subject.other |
Unsteady supersonic flow |
en |
dc.subject.other |
Pressure measurement |
en |
dc.subject.other |
Supersonic aerodynamics |
en |
dc.subject.other |
Supersonic flow |
en |
dc.subject.other |
Bodies of revolution |
en |
dc.title |
Nonlinear unsteady supersonic flow analysis for slender bodies of revolution: Series solutions, convergence and results |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/S1024123X97000641 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/S1024123X97000641 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In Ref. [6] the authors constructed analytical solutions including one arbitrary function for the problem of nonlinear, unsteady, supersonic flow analysis concerning slender bodies of revolution due to small amplitude oscillations. An application describing a flow past a right circular cone was presented and the constructed solutions were given in the form of infinite series through a set of convenient boundary and initial conditions in accordance with the physical problem. In the present paper we develop an appropriate convergence analysis concerning the before mentioned series solutions for the specific geometry of a rigid right circular cone. We succeed in estimating the limiting values of the series producing velocity and acceleration resultants of the problem under consideration. Several graphics for the velocity and acceleration flow fields are presented. We must underline here that the proposed convergence technique is unique and can be applied to any other geometry of the considered body of revolution. © 1998 OP A (Overseas Publishers Association). |
en |
heal.publisher |
GORDON BREACH SCI PUBL LTD |
en |
heal.journalName |
Mathematical Problems in Engineering |
en |
dc.identifier.doi |
10.1155/S1024123X97000641 |
en |
dc.identifier.isi |
ISI:000073172200001 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
481 |
en |
dc.identifier.epage |
501 |
en |