HEAL DSpace

Nonlinear unsteady supersonic flow analysis for slender bodies of revolution: Series solutions, convergence and results

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Markakis, M en
dc.contributor.author Panayotounakos, DE en
dc.date.accessioned 2014-03-01T01:13:56Z
dc.date.available 2014-03-01T01:13:56Z
dc.date.issued 1998 en
dc.identifier.issn 1024-123X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12796
dc.subject Convergence analysis en
dc.subject Right circular cone en
dc.subject Unsteady supersonic flow en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Analytical solutions en
dc.subject.other Arbitrary functions en
dc.subject.other Body of revolution en
dc.subject.other Circular cones en
dc.subject.other Convergence analysis en
dc.subject.other Infinite series en
dc.subject.other Initial conditions en
dc.subject.other Limiting values en
dc.subject.other Series solutions en
dc.subject.other Slender bodies en
dc.subject.other Small-amplitude oscillations en
dc.subject.other Unsteady supersonic flow en
dc.subject.other Pressure measurement en
dc.subject.other Supersonic aerodynamics en
dc.subject.other Supersonic flow en
dc.subject.other Bodies of revolution en
dc.title Nonlinear unsteady supersonic flow analysis for slender bodies of revolution: Series solutions, convergence and results en
heal.type journalArticle en
heal.identifier.primary 10.1155/S1024123X97000641 en
heal.identifier.secondary http://dx.doi.org/10.1155/S1024123X97000641 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract In Ref. [6] the authors constructed analytical solutions including one arbitrary function for the problem of nonlinear, unsteady, supersonic flow analysis concerning slender bodies of revolution due to small amplitude oscillations. An application describing a flow past a right circular cone was presented and the constructed solutions were given in the form of infinite series through a set of convenient boundary and initial conditions in accordance with the physical problem. In the present paper we develop an appropriate convergence analysis concerning the before mentioned series solutions for the specific geometry of a rigid right circular cone. We succeed in estimating the limiting values of the series producing velocity and acceleration resultants of the problem under consideration. Several graphics for the velocity and acceleration flow fields are presented. We must underline here that the proposed convergence technique is unique and can be applied to any other geometry of the considered body of revolution. © 1998 OP A (Overseas Publishers Association). en
heal.publisher GORDON BREACH SCI PUBL LTD en
heal.journalName Mathematical Problems in Engineering en
dc.identifier.doi 10.1155/S1024123X97000641 en
dc.identifier.isi ISI:000073172200001 en
dc.identifier.volume 3 en
dc.identifier.issue 6 en
dc.identifier.spage 481 en
dc.identifier.epage 501 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής