dc.contributor.author |
Klipfel, A |
en |
dc.contributor.author |
Founti, M |
en |
dc.contributor.author |
Zahringer, K |
en |
dc.contributor.author |
Martin, JP |
en |
dc.contributor.author |
Petit, JP |
en |
dc.date.accessioned |
2014-03-01T01:13:56Z |
|
dc.date.available |
2014-03-01T01:13:56Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
1386-6184 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12803 |
|
dc.subject |
CFD |
en |
dc.subject |
combustion modelling |
en |
dc.subject |
industrial experiments |
en |
dc.subject |
gas-particle two-phase flow |
en |
dc.subject |
particle expansion model |
en |
dc.subject |
radiation |
en |
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Brownian movement |
en |
dc.subject.other |
Composition |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Industrial furnaces |
en |
dc.subject.other |
Particles (particulate matter) |
en |
dc.subject.other |
Silica |
en |
dc.subject.other |
Temperature distribution |
en |
dc.subject.other |
Turbulent flow |
en |
dc.subject.other |
Two phase flow |
en |
dc.subject.other |
Computational code |
en |
dc.subject.other |
Eulerian-Lagrangian approach |
en |
dc.subject.other |
Perlite expansion furnace |
en |
dc.subject.other |
Perlite expansion processes |
en |
dc.subject.other |
Combustion |
en |
dc.title |
Numerical simulation and experimental validation of the turbulent combustion and perlite expansion processes in an industrial perlite expansion furnace |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1009900726809 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1009900726809 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
A computational code has been developed based on a Eulerian-Lagrangian approach in order to model the combustion and the motion of perlite particles in a vertical expansion furnace. The expansion of a single particle, which takes place during its motion in the furnace, has been modeled by taking into account the perlite chemical composition and the gradual variation of the temperature distribution inside the grain. Experiments, performed in a perlite expansion plant, have been used to validate the computational results. The operational characteristics of a perlite expansion furnace have been measured and have served as inlet conditions for the numerical simulation of the combustion and perlite expansion processes. The good agreement between measurements and predictions indicates that the developed computational tool can be used to optimize the perlite expansion process leading to reduced fuel consumption with increased productivity. |
en |
heal.publisher |
Kluwer Academic Publishers, Dordrecht, Netherlands |
en |
heal.journalName |
Flow, Turbulence and Combustion |
en |
dc.identifier.doi |
10.1023/A:1009900726809 |
en |
dc.identifier.isi |
ISI:000080389900003 |
en |
dc.identifier.volume |
60 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
283 |
en |
dc.identifier.epage |
300 |
en |