dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Shahzad, N |
en |
dc.date.accessioned |
2014-03-01T01:13:57Z |
|
dc.date.available |
2014-03-01T01:13:57Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0236-5294 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12808 |
|
dc.subject |
Differential Inclusion |
en |
dc.subject |
Initial Condition |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
CONTINUOUS APPROXIMATIONS |
en |
dc.subject.other |
MULTIFUNCTIONS |
en |
dc.subject.other |
MEMORY |
en |
dc.subject.other |
SET |
en |
dc.title |
On maximal monotone differential inclusions in RN |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1006578722084 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1006578722084 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In this paper we consider differential inclusions driven by a maximal monotone operator. First we show that for the nonconvex system the solution set viewed as a multifunction of the initial condition admits a continuous selector passing from a prescribed point. Then we use this selector to show the path connectedness of the solution set. We also investigate the continuity properties of the solution multifunction. Finally we solve a viability problem and we also establish the existence of periodic trajectories. |
en |
heal.publisher |
AKADEMIAI KIADO |
en |
heal.journalName |
Acta Mathematica Hungarica |
en |
dc.identifier.doi |
10.1023/A:1006578722084 |
en |
dc.identifier.isi |
ISI:000072182600001 |
en |
dc.identifier.volume |
78 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
175 |
en |
dc.identifier.epage |
197 |
en |