HEAL DSpace

Robustness of a spectral assignment method applied to a flexible beam

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tzafestas, SG en
dc.contributor.author Tzamtzi, MP en
dc.date.accessioned 2014-03-01T01:14:07Z
dc.date.available 2014-03-01T01:14:07Z
dc.date.issued 1998 en
dc.identifier.issn 0020-7179 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12879
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0032137591&partnerID=40&md5=6d1f3c5cb74fc358f948fbb78a061fda en
dc.subject.classification Automation & Control Systems en
dc.subject.other Boundary conditions en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Mathematical operators en
dc.subject.other Perturbation techniques en
dc.subject.other Polynomials en
dc.subject.other State space methods en
dc.subject.other System stability en
dc.subject.other Flexible beam en
dc.subject.other Hyperbolic equations en
dc.subject.other Spectral assignment method en
dc.subject.other Robustness (control systems) en
dc.title Robustness of a spectral assignment method applied to a flexible beam en
heal.type journalArticle en
heal.language English en
heal.publicationDate 1998 en
heal.abstract In this paper the robustness of a spectral assignment method applied to the system of a flexible beam is studied. It is shown that the intersection between any admissible set of closed-loop eigenvalues of the nominal system and a corresponding set of a perturbed system can only have a finite number of elements. Then, the impact on the eigenvalues of the perturbed system of a control law that affects only a finite number of eigenvalues of the nominal system is investigated. It is proved that only a finite number of eigenvalues of the perturbed system is moved. In addition, the polynomial whose roots are these closed-loop eigenvalues of the perturbed system is determined. Finally, using a new parameterization of uncertainty, the nonlinearity of the coefficients of this polynomial with respect to the uncertain parameters is simplified, turning it into a multivariate polynomial form whose stability robustness can be studied using several known methods. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName International Journal of Control en
dc.identifier.isi ISI:000075187400002 en
dc.identifier.volume 70 en
dc.identifier.issue 6 en
dc.identifier.spage 859 en
dc.identifier.epage 872 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής