dc.contributor.author |
Tzafestas, SG |
en |
dc.contributor.author |
Tzamtzi, MP |
en |
dc.date.accessioned |
2014-03-01T01:14:07Z |
|
dc.date.available |
2014-03-01T01:14:07Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0020-7179 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12879 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0032137591&partnerID=40&md5=6d1f3c5cb74fc358f948fbb78a061fda |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Polynomials |
en |
dc.subject.other |
State space methods |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Flexible beam |
en |
dc.subject.other |
Hyperbolic equations |
en |
dc.subject.other |
Spectral assignment method |
en |
dc.subject.other |
Robustness (control systems) |
en |
dc.title |
Robustness of a spectral assignment method applied to a flexible beam |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
In this paper the robustness of a spectral assignment method applied to the system of a flexible beam is studied. It is shown that the intersection between any admissible set of closed-loop eigenvalues of the nominal system and a corresponding set of a perturbed system can only have a finite number of elements. Then, the impact on the eigenvalues of the perturbed system of a control law that affects only a finite number of eigenvalues of the nominal system is investigated. It is proved that only a finite number of eigenvalues of the perturbed system is moved. In addition, the polynomial whose roots are these closed-loop eigenvalues of the perturbed system is determined. Finally, using a new parameterization of uncertainty, the nonlinearity of the coefficients of this polynomial with respect to the uncertain parameters is simplified, turning it into a multivariate polynomial form whose stability robustness can be studied using several known methods. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
International Journal of Control |
en |
dc.identifier.isi |
ISI:000075187400002 |
en |
dc.identifier.volume |
70 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
859 |
en |
dc.identifier.epage |
872 |
en |