HEAL DSpace

Structural optimization using evolution strategies and neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadrakakis, M en
dc.contributor.author Lagaros, ND en
dc.contributor.author Tsompanakis, Y en
dc.date.accessioned 2014-03-01T01:14:12Z
dc.date.available 2014-03-01T01:14:12Z
dc.date.issued 1998 en
dc.identifier.issn 0045-7825 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12918
dc.subject Back Propagation Algorithm en
dc.subject Combinatorial Optimization en
dc.subject Evolution Strategy en
dc.subject Large Scale en
dc.subject Large Scale Optimization en
dc.subject Optimization Problem en
dc.subject Size Structure en
dc.subject Structure Analysis en
dc.subject Structure Optimization en
dc.subject Neural Network en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other DESIGN en
dc.title Structural optimization using evolution strategies and neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0045-7825(97)00215-6 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0045-7825(97)00215-6 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract The objective of this paper is to investigate the efficiency of combinatorial optimization methods, in particular algorithms based on evolution strategies (ES) when incorporated into the solution of large-scale, continuous or discrete, structural optimization problems. Two types of applications have been investigated, namely shape and sizing structural optimization problems. Furthermore, a neural network (NN) model is used in order to replace the structural analysis phase and to compute the necessary data for the ES optimization procedure. The use of NN was motivated by the time-consuming repeated analyses required by ES during the optimization process. A back propagation algorithm is implemented for training the NN using data derived from selected analyses. The trained NN is then used to predict, within an acceptable accuracy, the values of the objective and constraint functions. The numerical tests presented demonstrate the computational advantages of the proposed approach which become more pronounced in large-scale optimization problems. (C) 1998 Elsevier Science S.A. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Computer Methods in Applied Mechanics and Engineering en
dc.identifier.doi 10.1016/S0045-7825(97)00215-6 en
dc.identifier.isi ISI:000073491400017 en
dc.identifier.volume 156 en
dc.identifier.issue 1-4 en
dc.identifier.spage 309 en
dc.identifier.epage 333 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής