HEAL DSpace

Tangential-displacement effects in the wedge indentation of an elastic half-space - An integral-equation approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiadis, HG en
dc.date.accessioned 2014-03-01T01:14:13Z
dc.date.available 2014-03-01T01:14:13Z
dc.date.issued 1998 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12928
dc.subject Boundary Condition en
dc.subject Contact Problem en
dc.subject Contact Stress en
dc.subject Contact Zone en
dc.subject Integral Equation en
dc.subject Mixed Boundary Value Problem en
dc.subject Stress Field en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Boundary conditions en
dc.subject.other Boundary value problems en
dc.subject.other Integral equations en
dc.subject.other Interfaces (materials) en
dc.subject.other Tangential displacement effects en
dc.subject.other Wedge indentation en
dc.subject.other Elasticity en
dc.title Tangential-displacement effects in the wedge indentation of an elastic half-space - An integral-equation approach en
heal.type journalArticle en
heal.identifier.primary 10.1007/s004660050311 en
heal.identifier.secondary http://dx.doi.org/10.1007/s004660050311 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract The idea of considering tangential-displacement effects in a classical elastostatic contact problem is explored in this paper. The problem involves the static frictionless indentation of a linearly elastic half-plane by a rigid wedge, and its present formulation implies that the tangential surface displacements are not negligible and should thus be coupled with the normal surface displacements in imposing the contact zone boundary conditions. L.M. Brock introduced this idea some years ago in treating self-similar elastodynamic contact problems, and his studies indicated that such a formulation strongly influences the contact-stress behavior at half-plane points making contact with geometrical discontinuities of the indentor. The present work again demonstrates, by studying an even more classical problem, that the aforementioned considerations eliminate contact-stress singularities and therefore yield a more natural solution behavior. In particular, the familiar wedge-apex logarithmic stress-singularity encountered within the standard formulation of the problem (i.e. by avoiding the tangential displacement in the contact boundary condition) disappears within the proposed formulation. The contact stress beneath the wedge apex takes now a finite value depending on the wedge inclination angle and the material constants. By utilizing pertinent integral relations for the displacement/stress field in the half-plane, an unusual mixed boundary-value problem results whose solution is obtained through integral equations. en
heal.publisher SPRINGER VERLAG en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s004660050311 en
dc.identifier.isi ISI:000074177700011 en
dc.identifier.volume 21 en
dc.identifier.issue 4-5 en
dc.identifier.spage 347 en
dc.identifier.epage 352 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής