dc.contributor.author |
Fikioris, JG |
en |
dc.date.accessioned |
2014-03-01T01:14:14Z |
|
dc.date.available |
2014-03-01T01:14:14Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0018-926X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12941 |
|
dc.subject |
Electromagnetic fields |
en |
dc.subject |
Hybrid methods |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Current density |
en |
dc.subject.other |
Integrodifferential equations |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Parallelepiped cells |
en |
dc.subject.other |
Electromagnetic field theory |
en |
dc.title |
The EM field of constant current density distributions in parallelepiped regions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/8.719980 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/8.719980 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
The electromagnetic field vectors (A) over bar, (H) over bar, (E) over bar arising from a constant current density (J) over bar in an electrically small orthogonal parallelepiped region v are obtained analytically and exactly, up to order (kr)(4), af any point (x, y, z) a distance r from the center of v, They are then applied to the solution of an electric field integrodifferential equation (EFIDE) for which the region V has been divided into small parallelepiped cells, These new results are directly applicable to the evaluation of electromagnetic field interaction with natural media. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Antennas and Propagation |
en |
dc.identifier.doi |
10.1109/8.719980 |
en |
dc.identifier.isi |
ISI:000076095700015 |
en |
dc.identifier.volume |
46 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
1358 |
en |
dc.identifier.epage |
1364 |
en |