HEAL DSpace

The Floquet Theory of the Periodic Euler-Bernoulli Equation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papanicolaou, VG en
dc.contributor.author Kravvaritis, D en
dc.date.accessioned 2014-03-01T01:14:14Z
dc.date.available 2014-03-01T01:14:14Z
dc.date.issued 1998 en
dc.identifier.issn 0022-0396 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12942
dc.subject Algebraic/geometric multiplicity en
dc.subject Euler-Bernoulli equation for the vibrating beam en
dc.subject Floquet spectrum en
dc.subject Pseudospectrum en
dc.subject.classification Mathematics en
dc.subject.other SCHRODINGER-OPERATORS en
dc.subject.other SPECTRAL THEORY en
dc.subject.other VIBRATING BEAM en
dc.title The Floquet Theory of the Periodic Euler-Bernoulli Equation en
heal.type journalArticle en
heal.identifier.primary 10.1006/jdeq.1998.3474 en
heal.identifier.secondary http://dx.doi.org/10.1006/jdeq.1998.3474 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract We continue the study (initiated in [17]) of the spectral theory of the fourth-order eigenvalue problem [a(x) u "(x)]" = lambda rho(x) u(x), - infinity <x <infinity, where the functions a and p are periodic and strictly positive. This equation models the transverse vibrations of a thin straight (periodic) beam whose physical characteristics are described by a and p. The equality of the algebraic and geometric multiplicities of the periodic and antiperiodic eigenvalues is established. Also a spectrum-like set, that we called "pseudospectrum" or "psi-spectrum," is introduced (or, rather, discovered). This psi-spectrum is shown to lie on the negative real axis and have a band-gap structure. Various open questions and conjectures are mentioned at the end of the paper. (C) 1998 Academic Press. en
heal.publisher ACADEMIC PRESS INC en
heal.journalName Journal of Differential Equations en
dc.identifier.doi 10.1006/jdeq.1998.3474 en
dc.identifier.isi ISI:000077460400002 en
dc.identifier.volume 150 en
dc.identifier.issue 1 en
dc.identifier.spage 24 en
dc.identifier.epage 41 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής