dc.contributor.author |
Papathanasiou, AG |
en |
dc.contributor.author |
Boudouvis, AG |
en |
dc.date.accessioned |
2014-03-01T01:14:15Z |
|
dc.date.available |
2014-03-01T01:14:15Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12951 |
|
dc.subject |
Bifurcation Theory |
en |
dc.subject |
Critical Value |
en |
dc.subject |
Cross Section |
en |
dc.subject |
Finite Element Method |
en |
dc.subject |
Free Boundary |
en |
dc.subject |
Magnetic Field |
en |
dc.subject |
Parameter Space |
en |
dc.subject |
Three Dimensional |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Ferromagnetic materials |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Magnetohydrodynamics |
en |
dc.subject.other |
Ferromagnetic liquid bridges |
en |
dc.subject.other |
Galerkin method |
en |
dc.subject.other |
Drop formation |
en |
dc.title |
Three-dimensional instabilities of ferromagnetic liquid bridges |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s004660050318 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s004660050318 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
The cross section of a ferromagnetic liquid drop held in equilibrium between horizontal plates in a magnetic field loses its circular symmetry past a critical value of the applied field strength. This is caused by instabilities that give way to non-circular cross sectional shapes which, in turn, produce three-dimensional magnetic field distribution inside and outside the drop. Theoretical predictions of equilibrium non-circular shapes and their stability are drawn from the equations governing the magnetohydrostatic equilibrium of the drop. The computational problem is three-dimensional, nonlinear and free boundary and it is solved with the Galerkin/finite element method. Entire branches of circular solutions and non-circular ones are traced by continuation in multi-parameter space. Circular, elliptical and dumbbell-shaped drops have been found. The relative stability of the various shapes is computed by means of computer-implemented bifurcation theory. |
en |
heal.publisher |
Springer-Verlag GmbH & Company KG, Berlin, Germany |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s004660050318 |
en |
dc.identifier.isi |
ISI:000074177700018 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
4-5 |
en |
dc.identifier.spage |
403 |
en |
dc.identifier.epage |
408 |
en |