HEAL DSpace

Three-dimensional instabilities of ferromagnetic liquid bridges

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papathanasiou, AG en
dc.contributor.author Boudouvis, AG en
dc.date.accessioned 2014-03-01T01:14:15Z
dc.date.available 2014-03-01T01:14:15Z
dc.date.issued 1998 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12951
dc.subject Bifurcation Theory en
dc.subject Critical Value en
dc.subject Cross Section en
dc.subject Finite Element Method en
dc.subject Free Boundary en
dc.subject Magnetic Field en
dc.subject Parameter Space en
dc.subject Three Dimensional en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Computational methods en
dc.subject.other Ferromagnetic materials en
dc.subject.other Finite element method en
dc.subject.other Magnetohydrodynamics en
dc.subject.other Ferromagnetic liquid bridges en
dc.subject.other Galerkin method en
dc.subject.other Drop formation en
dc.title Three-dimensional instabilities of ferromagnetic liquid bridges en
heal.type journalArticle en
heal.identifier.primary 10.1007/s004660050318 en
heal.identifier.secondary http://dx.doi.org/10.1007/s004660050318 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract The cross section of a ferromagnetic liquid drop held in equilibrium between horizontal plates in a magnetic field loses its circular symmetry past a critical value of the applied field strength. This is caused by instabilities that give way to non-circular cross sectional shapes which, in turn, produce three-dimensional magnetic field distribution inside and outside the drop. Theoretical predictions of equilibrium non-circular shapes and their stability are drawn from the equations governing the magnetohydrostatic equilibrium of the drop. The computational problem is three-dimensional, nonlinear and free boundary and it is solved with the Galerkin/finite element method. Entire branches of circular solutions and non-circular ones are traced by continuation in multi-parameter space. Circular, elliptical and dumbbell-shaped drops have been found. The relative stability of the various shapes is computed by means of computer-implemented bifurcation theory. en
heal.publisher Springer-Verlag GmbH & Company KG, Berlin, Germany en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s004660050318 en
dc.identifier.isi ISI:000074177700018 en
dc.identifier.volume 21 en
dc.identifier.issue 4-5 en
dc.identifier.spage 403 en
dc.identifier.epage 408 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής