dc.contributor.author |
Guan, F |
en |
dc.contributor.author |
Moore, ID |
en |
dc.contributor.author |
Spyrakos, CC |
en |
dc.date.accessioned |
2014-03-01T01:14:15Z |
|
dc.date.available |
2014-03-01T01:14:15Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0267-7261 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12960 |
|
dc.subject |
Boundary Element |
en |
dc.subject |
Contour Integration |
en |
dc.subject |
Finite Element |
en |
dc.subject |
Free Surface |
en |
dc.subject |
Fundamental Solution |
en |
dc.subject |
Green Function |
en |
dc.subject |
Inverse Laplace Transform |
en |
dc.subject |
Wave Propagation |
en |
dc.subject |
Fourier Transform |
en |
dc.subject.classification |
Engineering, Geological |
en |
dc.subject.classification |
Geosciences, Multidisciplinary |
en |
dc.subject.other |
bioengineering |
en |
dc.subject.other |
fourier transformation |
en |
dc.subject.other |
laplace transform |
en |
dc.subject.other |
propagation |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Fourier transforms |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Wave propagation |
en |
dc.subject.other |
Inverse transforms |
en |
dc.subject.other |
Green's function |
en |
dc.subject.other |
dynamic response |
en |
dc.subject.other |
half space |
en |
dc.subject.other |
loading |
en |
dc.subject.other |
wave propagation |
en |
dc.title |
Two dimensional transient fundamental solution due to suddenly applied load in a half-space |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0267-7261(97)00037-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0267-7261(97)00037-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
A transient Green function due to suddenly applied line loads in an isotropic and homogeneous half-space is reported in this paper. The derivation of the half-space Green function in the Laplace and the Fourier transform spaces is first reviewed. Following an explicit inversion of the Fourier transform, the inverse Laplace transform is implemented along the contour integral on the p-complex plane in an integral form. The half-space Green function consists of full-space Green functions and a singularity-free complementary term. It can be easily incorporated into current transient boundary elements using the transient full-space Green function. Combined with finite elements, the half-space Green function can be used in a hybrid procedure to solve transient half-space problems without discretization of the free surface. Numerical results are presented to illustrate transient wave propagation in a halfspace. (C) 1998 Published by Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Soil Dynamics and Earthquake Engineering |
en |
dc.identifier.doi |
10.1016/S0267-7261(97)00037-7 |
en |
dc.identifier.isi |
ISI:000074340800006 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
269 |
en |
dc.identifier.epage |
277 |
en |