Two dimensional transient fundamental solution due to suddenly applied load in a half-space

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Guan, F en
dc.contributor.author Moore, ID en
dc.contributor.author Spyrakos, CC en
dc.date.accessioned 2014-03-01T01:14:15Z
dc.date.available 2014-03-01T01:14:15Z
dc.date.issued 1998 en
dc.identifier.issn 0267-7261 en
dc.identifier.uri http://hdl.handle.net/123456789/12960
dc.subject Boundary Element en
dc.subject Contour Integration en
dc.subject Finite Element en
dc.subject Free Surface en
dc.subject Fundamental Solution en
dc.subject Green Function en
dc.subject Inverse Laplace Transform en
dc.subject Wave Propagation en
dc.subject Fourier Transform en
dc.subject.classification Engineering, Geological en
dc.subject.classification Geosciences, Multidisciplinary en
dc.subject.other bioengineering en
dc.subject.other fourier transformation en
dc.subject.other laplace transform en
dc.subject.other propagation en
dc.subject.other Boundary element method en
dc.subject.other Finite element method en
dc.subject.other Fourier transforms en
dc.subject.other Integral equations en
dc.subject.other Laplace transforms en
dc.subject.other Problem solving en
dc.subject.other Wave propagation en
dc.subject.other Inverse transforms en
dc.subject.other Green's function en
dc.subject.other dynamic response en
dc.subject.other half space en
dc.subject.other loading en
dc.subject.other wave propagation en
dc.title Two dimensional transient fundamental solution due to suddenly applied load in a half-space en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0267-7261(97)00037-7 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0267-7261(97)00037-7 en
heal.language English en
heal.publicationDate 1998 en
heal.abstract A transient Green function due to suddenly applied line loads in an isotropic and homogeneous half-space is reported in this paper. The derivation of the half-space Green function in the Laplace and the Fourier transform spaces is first reviewed. Following an explicit inversion of the Fourier transform, the inverse Laplace transform is implemented along the contour integral on the p-complex plane in an integral form. The half-space Green function consists of full-space Green functions and a singularity-free complementary term. It can be easily incorporated into current transient boundary elements using the transient full-space Green function. Combined with finite elements, the half-space Green function can be used in a hybrid procedure to solve transient half-space problems without discretization of the free surface. Numerical results are presented to illustrate transient wave propagation in a halfspace. (C) 1998 Published by Elsevier Science Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Soil Dynamics and Earthquake Engineering en
dc.identifier.doi 10.1016/S0267-7261(97)00037-7 en
dc.identifier.isi ISI:000074340800006 en
dc.identifier.volume 17 en
dc.identifier.issue 4 en
dc.identifier.spage 269 en
dc.identifier.epage 277 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record