dc.contributor.author |
Caroni, C |
en |
dc.date.accessioned |
2014-03-01T01:14:16Z |
|
dc.date.available |
2014-03-01T01:14:16Z |
|
dc.date.issued |
1998 |
en |
dc.identifier.issn |
0361-0918 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12970 |
|
dc.subject |
MANOVA |
en |
dc.subject |
Multivariate normal |
en |
dc.subject |
Outliers |
en |
dc.subject |
Robustness |
en |
dc.subject |
Wilks' test |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.title |
Wilks' outlier test in more than one multivariate sample |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/03610919808813466 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/03610919808813466 |
en |
heal.language |
English |
en |
heal.publicationDate |
1998 |
en |
heal.abstract |
Wilks' test for a single outlier in a multivariate normal sample is extended to the case of samples from different subpopulations with common covariance matrix, a situation arising in MANOVA, for example. Simulation results show that the size of the test is acceptably robust to moderate heterogeneity in covariances (25-50% difference in total variation), especially if sample sizes are small (below 20 per group). However covariance heterogeneity leads to a drastic loss of power, unless this heterogeneity is concentrated in one dimension and the outlier appears in a different dimension. It is concluded that the extended test should be used with caution since it will often be difficult to establish whether these conditions hold. |
en |
heal.publisher |
MARCEL DEKKER INC |
en |
heal.journalName |
Communications in Statistics Part B: Simulation and Computation |
en |
dc.identifier.doi |
10.1080/03610919808813466 |
en |
dc.identifier.isi |
ISI:000072492100006 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
79 |
en |
dc.identifier.epage |
94 |
en |