HEAL DSpace

A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Athanassoulis, GA en
dc.contributor.author Belibassakis, KA en
dc.date.accessioned 2014-03-01T01:14:17Z
dc.date.available 2014-03-01T01:14:17Z
dc.date.issued 1999 en
dc.identifier.issn 0022-1120 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/12979
dc.subject Coupled Mode Theory en
dc.subject Water Waves en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other MILD-SLOPE EQUATION en
dc.subject.other FREE-SURFACE FLOWS en
dc.subject.other GRAVITY-WAVES en
dc.subject.other HAMILTONS PRINCIPLE en
dc.subject.other VARYING TOPOGRAPHY en
dc.subject.other NUMERICAL-METHODS en
dc.subject.other ELEMENT METHOD en
dc.subject.other REFLECTION en
dc.subject.other APPROXIMATIONS en
dc.subject.other DIFFRACTION en
dc.title A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions en
heal.type journalArticle en
heal.identifier.primary 10.1017/S0022112099004978 en
heal.identifier.secondary http://dx.doi.org/10.1017/S0022112099004978 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract Extended mild-slope equations for the propagation of small-amplitude water waves over variable bathymetry regions, recently proposed by Massel (1993) and Porter & Staziker (1995), are shown to exhibit an inconsistency concerning the sloping-bottom boundary condition, which renders them non-conservative with respect to wave energy. In the present work, a consistent coupled-mode theory is derived from a variational formulation of the complete linear problem, by representing the vertical distribution of the wave potential as a uniformly convergent series of local vertical modes at each horizontal position. This series consists of the vertical eigenfunctions associated with the propagating and all evanescent modes and, when the slope of the bottom is different from zero, an additional mode, carrying information about the bottom slope. The coupled-mode system obtained in this way contains an additional equation, as well as additional interaction terms in all other equations, and reduces to the previous extended mild-slope equations when the additional mode is neglected. Extensive numerical results demonstrate that the present model leads to the exact satisfaction of the bottom boundary condition and, thus, it is energy conservative. Moreover, it is numerically shown that the rate of decay of the modal-amplitude functions is improved from O(n-2), where n is the mode number, to O(n-4), when the additional sloping-bottom mode is included in the representation. This fact substantially accelerates the convergence of the modal series and ensures the uniform convergence of the velocity field up to and including the boundaries. en
heal.publisher CAMBRIDGE UNIV PRESS en
heal.journalName Journal of Fluid Mechanics en
dc.identifier.doi 10.1017/S0022112099004978 en
dc.identifier.isi ISI:000081596900012 en
dc.identifier.volume 389 en
dc.identifier.spage 275 en
dc.identifier.epage 301 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής