dc.contributor.author |
Tsitouras, C |
en |
dc.date.accessioned |
2014-03-01T01:14:18Z |
|
dc.date.available |
2014-03-01T01:14:18Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0898-1221 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12989 |
|
dc.subject |
periodic ODEs |
en |
dc.subject |
amplification error |
en |
dc.subject |
dissipation error |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Error analysis |
en |
dc.subject.other |
Initial value problems |
en |
dc.subject.other |
Ordinary differential equations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Oscillating solutions |
en |
dc.subject.other |
Runge Kutta methods |
en |
dc.title |
High-order explicit Runge-Kutta pair for initial value problems with oscillating solutions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0898-1221(99)00074-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0898-1221(99)00074-7 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
A new Runge-Kutta-pair of orders eight and seven is presented here. The proposed pair when applied with small step-size to the test equation dy/dx == i omega y, omega real, has amplification factors very near to unit. This is very important then, because the numerical solution stays close to the cyclic solution of the test problem. Numerical tests over a set of problems with oscillating solutions demonstrate the superiority of the new pair. (C) 1999 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
Elsevier Science Ltd |
en |
heal.journalName |
Computers and Mathematics with Applications |
en |
dc.identifier.doi |
10.1016/S0898-1221(99)00074-7 |
en |
dc.identifier.isi |
ISI:000079298700004 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
31 |
en |
dc.identifier.epage |
36 |
en |