dc.contributor.author |
Papadakis, G |
en |
dc.contributor.author |
Bergeles, G |
en |
dc.date.accessioned |
2014-03-01T01:14:19Z |
|
dc.date.available |
2014-03-01T01:14:19Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0271-2091 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/12991 |
|
dc.subject |
Conjugate gradient method |
en |
dc.subject |
Finite volumes |
en |
dc.subject |
Incompressible recirculating flows |
en |
dc.subject |
Local refinement |
en |
dc.subject |
Staggered mesh |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
SIMULATION |
en |
dc.subject.other |
CUBE |
en |
dc.title |
A local grid refinement method for three-dimensional turbulent recirculating flows |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/(SICI)1097-0363(19991215)31:7<1157::AID-FLD917>3.0.CO;2-V |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/(SICI)1097-0363(19991215)31:7<1157::AID-FLD917>3.0.CO;2-V |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
A local grid refinement method is presented and applied to a three-dimensional turbulent recirculating flow. It is based on the staggered grid arrangement. The computational domain is covered by block-structured subgrids of different refinement levels. The exchange of information between the subgrids is fully conservative and all grids are treated implicitly. This allows for a simultaneous solution of one variable in all grids. All variables are stored in one-dimensional arrays. The solver selected for the solution of the discretised finite difference equations is the preconditioned bi-conjugate gradient (Bi-CG) method. For the case examined (turbulent flow around a surface-mounted cube), it was found that the latter method converges faster than the line solver. The locally refined mesh improved the accuracy of the pressure distribution on cube faces compared with a coarse mesh and yielded the same results as a fine single mesh, with a 62% gain in computer time. Copyright (C) 1999 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
International Journal for Numerical Methods in Fluids |
en |
dc.identifier.doi |
10.1002/(SICI)1097-0363(19991215)31:7<1157::AID-FLD917>3.0.CO;2-V |
en |
dc.identifier.isi |
ISI:000083957600006 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
1157 |
en |
dc.identifier.epage |
1172 |
en |