HEAL DSpace

Stochastic framework for optimal key frame extraction from MPEG video databases

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Avrithis, YS en
dc.contributor.author Doulamis, AD en
dc.contributor.author Doulamis, ND en
dc.contributor.author Kollias, SD en
dc.date.accessioned 2014-03-01T01:14:21Z
dc.date.available 2014-03-01T01:14:21Z
dc.date.issued 1999 en
dc.identifier.issn 1077-3142 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13015
dc.subject Cross Correlation en
dc.subject Efficient Implementation en
dc.subject Feature Vector en
dc.subject Genetic Algorithm en
dc.subject Motion Segmentation en
dc.subject Mpeg Video en
dc.subject Spanning Tree en
dc.subject Temporal Variation en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Database systems en
dc.subject.other Genetic algorithms en
dc.subject.other Image analysis en
dc.subject.other Image compression en
dc.subject.other Image quality en
dc.subject.other Image segmentation en
dc.subject.other Standards en
dc.subject.other Trees (mathematics) en
dc.subject.other Motion picture experts group (MPEG) standards en
dc.subject.other Recursive shortest spanning tree (RSST) algorithms en
dc.subject.other Feature extraction en
dc.title Stochastic framework for optimal key frame extraction from MPEG video databases en
heal.type journalArticle en
heal.identifier.primary 10.1006/cviu.1999.0761 en
heal.identifier.secondary http://dx.doi.org/10.1006/cviu.1999.0761 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract A video content representation framework is proposed in this paper for extracting limited, but meaningful, information of video data, directly from the MPEG compressed domain. A hierarchical color and motion segmentation scheme is applied to each video shot, transforming the frame-based representation to a feature-based one. The scheme is based on a multiresolution implementation of the recursive shortest spanning tree (RSST) algorithm. Then, all segment features are gathered together using a fuzzy multidimensional histogram to reduce the possibility of classifying similar segments to different classes. Extraction of several key frames is performed for each shot in a content-based rate-sampling framework. Two approaches are examined for key frame extraction. The first is based on examination of the temporal variation of the feature vector trajectory; the second is based on minimization of a cross-correlation criterion of the video frames. For efficient implementation of the latter approach, a logarithmic search (along with a stochastic version) and a genetic algorithm are proposed. Experimental results are presented which illustrate the performance of the proposed techniques, using synthetic and real life MPEG video sequences. (C) 1999 Academic Press. en
heal.publisher Acad Press Inc, Orlando, FL, United States en
heal.journalName Computer Vision and Image Understanding en
dc.identifier.doi 10.1006/cviu.1999.0761 en
dc.identifier.isi ISI:000082266200002 en
dc.identifier.volume 75 en
dc.identifier.issue 1 en
dc.identifier.spage 3 en
dc.identifier.epage 24 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής