dc.contributor.author |
Avrithis, YS |
en |
dc.contributor.author |
Doulamis, AD |
en |
dc.contributor.author |
Doulamis, ND |
en |
dc.contributor.author |
Kollias, SD |
en |
dc.date.accessioned |
2014-03-01T01:14:21Z |
|
dc.date.available |
2014-03-01T01:14:21Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
1077-3142 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13015 |
|
dc.subject |
Cross Correlation |
en |
dc.subject |
Efficient Implementation |
en |
dc.subject |
Feature Vector |
en |
dc.subject |
Genetic Algorithm |
en |
dc.subject |
Motion Segmentation |
en |
dc.subject |
Mpeg Video |
en |
dc.subject |
Spanning Tree |
en |
dc.subject |
Temporal Variation |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Database systems |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Image compression |
en |
dc.subject.other |
Image quality |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Standards |
en |
dc.subject.other |
Trees (mathematics) |
en |
dc.subject.other |
Motion picture experts group (MPEG) standards |
en |
dc.subject.other |
Recursive shortest spanning tree (RSST) algorithms |
en |
dc.subject.other |
Feature extraction |
en |
dc.title |
Stochastic framework for optimal key frame extraction from MPEG video databases |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/cviu.1999.0761 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/cviu.1999.0761 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
A video content representation framework is proposed in this paper for extracting limited, but meaningful, information of video data, directly from the MPEG compressed domain. A hierarchical color and motion segmentation scheme is applied to each video shot, transforming the frame-based representation to a feature-based one. The scheme is based on a multiresolution implementation of the recursive shortest spanning tree (RSST) algorithm. Then, all segment features are gathered together using a fuzzy multidimensional histogram to reduce the possibility of classifying similar segments to different classes. Extraction of several key frames is performed for each shot in a content-based rate-sampling framework. Two approaches are examined for key frame extraction. The first is based on examination of the temporal variation of the feature vector trajectory; the second is based on minimization of a cross-correlation criterion of the video frames. For efficient implementation of the latter approach, a logarithmic search (along with a stochastic version) and a genetic algorithm are proposed. Experimental results are presented which illustrate the performance of the proposed techniques, using synthetic and real life MPEG video sequences. (C) 1999 Academic Press. |
en |
heal.publisher |
Acad Press Inc, Orlando, FL, United States |
en |
heal.journalName |
Computer Vision and Image Understanding |
en |
dc.identifier.doi |
10.1006/cviu.1999.0761 |
en |
dc.identifier.isi |
ISI:000082266200002 |
en |
dc.identifier.volume |
75 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
3 |
en |
dc.identifier.epage |
24 |
en |