dc.contributor.author |
Georgilakis, P |
en |
dc.contributor.author |
Hatziargyriou, N |
en |
dc.contributor.author |
Paparigas, D |
en |
dc.date.accessioned |
2014-03-01T01:14:22Z |
|
dc.date.available |
2014-03-01T01:14:22Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0895-0156 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13029 |
|
dc.subject |
Artificial Intelligence Method |
en |
dc.subject |
Intelligent System |
en |
dc.subject |
Iron |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.title |
Al helps reduce transformer iron losses |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/67.795137 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/67.795137 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
Methods for iron loss reduction during manufacturing of wound-core distribution transformers are presented. More specifically, measurements taken at the first stages of core construction are effectively used, in order to minimize iron losses of transformer (final product). To optimally exploit the measurements (feedback), artificial intelligence methods are applied. It is shown that intelligent systems are able to learn and interpret |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE COMPUTER APPLICATIONS IN POWER |
en |
dc.identifier.doi |
10.1109/67.795137 |
en |
dc.identifier.isi |
ISI:000082876700011 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
41 |
en |
dc.identifier.epage |
46 |
en |