dc.contributor.author |
Byszewski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:14:23Z |
|
dc.date.available |
2014-03-01T01:14:23Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
10489533 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13035 |
|
dc.subject |
Fixed Point Principle |
en |
dc.subject |
Measurable Multifunctions |
en |
dc.subject |
Measure of Noncompactness |
en |
dc.subject |
Multivalued Darboux Problem |
en |
dc.subject |
Nonlocal Conditions |
en |
dc.subject |
Upper and Lower Semicontinuous Multifunctions |
en |
dc.title |
An application of a noncompactness technique to an investigation of the existence of solutions to a nonlocal multivalued darboux problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/S1048953399000180 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/S1048953399000180 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
The aim of the paper is to prove two theorems on the existence of solutions to a nonlocal multivalued Darboux problem. The first theorem concerns the case when the orientor field is convex valued. The second theorem concerns the case when the orientor field is nonconvex valued. A compactness type condition involving the ball measure of noncompactness is applied. ©1999 by North Atlantic Science Publishing Company. |
en |
heal.journalName |
Journal of Applied Mathematics and Stochastic Analysis |
en |
dc.identifier.doi |
10.1155/S1048953399000180 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
179 |
en |
dc.identifier.epage |
190 |
en |