HEAL DSpace

Automatic retinal image registration scheme using global optimization techniques

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Matsopoulos, GK en
dc.contributor.author Mouravliansky, NA en
dc.contributor.author Delibasis, KK en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T01:14:26Z
dc.date.available 2014-03-01T01:14:26Z
dc.date.issued 1999 en
dc.identifier.issn 10897771 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13061
dc.subject Genetic algorithms en
dc.subject Image registration en
dc.subject Retinal images en
dc.subject Simulated annealing en
dc.subject Transformation models en
dc.subject.other algorithm en
dc.subject.other angiography en
dc.subject.other article en
dc.subject.other human en
dc.subject.other image processing en
dc.subject.other retina blood vessel en
dc.subject.other Algorithms en
dc.subject.other Angiography en
dc.subject.other Humans en
dc.subject.other Image Processing, Computer-Assisted en
dc.subject.other Retinal Vessels en
dc.subject.other Genetic algorithms en
dc.subject.other Mathematical models en
dc.subject.other Mathematical transformations en
dc.subject.other Simulated annealing en
dc.subject.other Chorioangiography en
dc.subject.other Fluorescein angiography en
dc.subject.other Image registration en
dc.subject.other Angiography en
dc.title Automatic retinal image registration scheme using global optimization techniques en
heal.type journalArticle en
heal.identifier.primary 10.1109/4233.748975 en
heal.identifier.secondary http://dx.doi.org/10.1109/4233.748975 en
heal.publicationDate 1999 en
heal.abstract Retinal image registration is commonly required in order to combine the complementary information in different retinal modalities. In this paper, a new automatic scheme to register retinal images is presented and is currently tested in a clinical environment. The scheme considers the suitability and efficiency of different image transformation models and function optimization techniques, following an initial preprocessing stage. Three different transformation models-affine, bilinear and projective-as well as three optimization techniques-downhill simplex method, simulated annealing and genetic algorithms-are investigated and compared in terms of accuracy and efficiency. The registration of 26 pairs of Fluoroscein Angiography and Indocyanine Green Chorioangiography images with the corresponding Red-Free retinal images, showed the superiority of combining genetic algorithms with the affine and bilinear transformation models. A comparative study of the proposed automatic registration scheme against the manual method, commonly used in the clinical practice, is finally presented showing the advantage of the proposed automatic scheme in terms of accuracy and consistency. © 1999 IEEE. en
heal.journalName IEEE Transactions on Information Technology in Biomedicine en
dc.identifier.doi 10.1109/4233.748975 en
dc.identifier.volume 3 en
dc.identifier.issue 1 en
dc.identifier.spage 47 en
dc.identifier.epage 60 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής