dc.contributor.author |
Lacey, AA |
en |
dc.contributor.author |
Tzanetis, DE |
en |
dc.contributor.author |
Vlamos, PM |
en |
dc.date.accessioned |
2014-03-01T01:14:26Z |
|
dc.date.available |
2014-03-01T01:14:26Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0033-5614 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13063 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0033224809&partnerID=40&md5=59b5e0a4b43e0fb1de612dfa44313a9f |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Electric conductivity |
en |
dc.subject.other |
Electric currents |
en |
dc.subject.other |
Electric heating |
en |
dc.subject.other |
Electric potential |
en |
dc.subject.other |
Food processing |
en |
dc.subject.other |
Temperature |
en |
dc.subject.other |
Thermal conductivity |
en |
dc.subject.other |
Electric current flowing |
en |
dc.subject.other |
Nonlocal problem |
en |
dc.subject.other |
Mathematical models |
en |
dc.title |
Behaviour of a non-local reactive convective problem modelling Ohmic heating of foods |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
We consider the non-local problem, u(t) + u(x) = lambda f(u)/(integral(0)(1) f(u)dx)(2), 0 < x < 1, which models the temperature when an electric current flows through a moving material with negligible thermal conductivity. The potential difference across the material is fixed but the electrical resistivity f(u) varies with temperature. It is found that, for f decreasing with integral(0)(infinity) f(s)ds < infinity, blow-up occurs if lambda is too large for a steady state to exist or if the initial condition is too big. If f is increasing with integral(0)(infinity) ds/f(s) < infinity blow-up is also possible. If f is increasing with integral(0)(infinity) ds/f(s) = infinity or decreasing with integral(0)(infinity) f(s)ds = infinity the solution is global. Some special cases with particular forms of f are discussed to illustrate what the solution can do. |
en |
heal.publisher |
Oxford Univ Press, Oxford, United Kingdom |
en |
heal.journalName |
Quarterly Journal of Mechanics and Applied Mathematics |
en |
dc.identifier.isi |
ISI:000083973500009 |
en |
dc.identifier.volume |
52 |
en |
dc.identifier.issue |
pt 4 |
en |
dc.identifier.spage |
623 |
en |
dc.identifier.epage |
644 |
en |