dc.contributor.author |
Kounadis, AN |
en |
dc.contributor.author |
Sophianopoulos, DS |
en |
dc.date.accessioned |
2014-03-01T01:14:28Z |
|
dc.date.available |
2014-03-01T01:14:28Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0020-7462 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13091 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0008440751&partnerID=40&md5=94037c47e0f985ea2c8f09119a2d4a0d |
en |
dc.subject |
Autonomous discrete systems |
en |
dc.subject |
Dynamic stability |
en |
dc.subject |
Limit cycles |
en |
dc.subject |
Symmetric/asymmetric damped systems |
en |
dc.subject |
Symmetrizable matrices |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
NONCONSERVATIVE SYSTEMS |
en |
dc.subject.other |
DISSIPATIVE SYSTEMS |
en |
dc.subject.other |
INSTABILITY |
en |
dc.subject.other |
DIVERGENCE |
en |
dc.subject.other |
REGIONS |
en |
dc.title |
Conditions for the occurrence of limit cycles in autonomous potential damped systems |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
The focal dynamic stability of discrete, weakly damped, systems under step loading of infinite duration either constant directional (potential load) or partial follower (non-potential load) is thoroughly re-examined. In particular, for such autonomous damped systems we seek conditions for the existence of: (a) a limit cycle response in case of a potential loading (symmetric) system and (b) a non-singular transformation which transforms a non-potential (asymmetric) system into an equivalent symmetric system. Using a 2-DOF as a model new findings are established that contradict existing widely accepted results. Thus, symmetric systems under certain conditions can exhibit a limit cycle response due to either a double-zero Jacobian eigenvalue or to a Hopf bifurcation. Also asymmetric (non-self-adjoint) systems, regardless of the degree of asymmetry, can always be transformed into equivalent symmetric systems. A variety of numerical examples confirm the validity of the theoretical findings presented herein. (C) 1999 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Non-Linear Mechanics |
en |
dc.identifier.isi |
ISI:000080105900014 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
949 |
en |
dc.identifier.epage |
966 |
en |