dc.contributor.author |
Georgiou, GC |
en |
dc.contributor.author |
Boudouvis, AG |
en |
dc.date.accessioned |
2014-03-01T01:14:28Z |
|
dc.date.available |
2014-03-01T01:14:28Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0271-2091 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13094 |
|
dc.subject |
Convergence |
en |
dc.subject |
Extrudate-swell |
en |
dc.subject |
Singular finite elements |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.classification |
Physics, Fluids & Plasmas |
en |
dc.subject.other |
Capillary flow |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Reynolds number |
en |
dc.subject.other |
Stress concentration |
en |
dc.subject.other |
Surface tension |
en |
dc.subject.other |
Swelling |
en |
dc.subject.other |
Capillary number |
en |
dc.subject.other |
Stress singularity |
en |
dc.subject.other |
Newtonian flow |
en |
dc.subject.other |
extrusion |
en |
dc.subject.other |
finite element method |
en |
dc.subject.other |
Newtonian fluid |
en |
dc.subject.other |
viscous fluid |
en |
dc.title |
Converged solutions of the Newtonian extrudate-swell problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/(SICI)1097-0363(19990215)29:3<363::AID-FLD792>3.0.CO;2-D |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/(SICI)1097-0363(19990215)29:3<363::AID-FLD792>3.0.CO;2-D |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
Both the axisymmetric and the planar Newtonian extrudate-swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of each of the two methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers. The numerical results show that the singular finite elements perform well if coarse or moderately refined meshes are used, and appear to be superior to the standard finite elements only when the Reynolds number is low and the surface tension is not large. The standard finite elements perform better as the surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant when the Reynolds number is high or the surface tension is large.Both the axisymmetric and the planar Newtonian extrudate-swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of each of the two methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers. The numerical results show that the singular finite elements perform well if coarse or moderately refined meshes are used, and appear to be superior to the standard finite elements only when the Reynolds number is low and the surface tension is not large. The standard finite elements perform better as the surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant when the Reynolds number is high or the surface tension is large. |
en |
heal.publisher |
John Wiley & Sons Ltd, Chichester, United Kingdom |
en |
heal.journalName |
International Journal for Numerical Methods in Fluids |
en |
dc.identifier.doi |
10.1002/(SICI)1097-0363(19990215)29:3<363::AID-FLD792>3.0.CO;2-D |
en |
dc.identifier.isi |
ISI:000078525700006 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
363 |
en |
dc.identifier.epage |
371 |
en |