HEAL DSpace

Converged solutions of the Newtonian extrudate-swell problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiou, GC en
dc.contributor.author Boudouvis, AG en
dc.date.accessioned 2014-03-01T01:14:28Z
dc.date.available 2014-03-01T01:14:28Z
dc.date.issued 1999 en
dc.identifier.issn 0271-2091 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13094
dc.subject Convergence en
dc.subject Extrudate-swell en
dc.subject Singular finite elements en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other Capillary flow en
dc.subject.other Convergence of numerical methods en
dc.subject.other Finite element method en
dc.subject.other Problem solving en
dc.subject.other Reynolds number en
dc.subject.other Stress concentration en
dc.subject.other Surface tension en
dc.subject.other Swelling en
dc.subject.other Capillary number en
dc.subject.other Stress singularity en
dc.subject.other Newtonian flow en
dc.subject.other extrusion en
dc.subject.other finite element method en
dc.subject.other Newtonian fluid en
dc.subject.other viscous fluid en
dc.title Converged solutions of the Newtonian extrudate-swell problem en
heal.type journalArticle en
heal.identifier.primary 10.1002/(SICI)1097-0363(19990215)29:3<363::AID-FLD792>3.0.CO;2-D en
heal.identifier.secondary http://dx.doi.org/10.1002/(SICI)1097-0363(19990215)29:3<363::AID-FLD792>3.0.CO;2-D en
heal.language English en
heal.publicationDate 1999 en
heal.abstract Both the axisymmetric and the planar Newtonian extrudate-swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of each of the two methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers. The numerical results show that the singular finite elements perform well if coarse or moderately refined meshes are used, and appear to be superior to the standard finite elements only when the Reynolds number is low and the surface tension is not large. The standard finite elements perform better as the surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant when the Reynolds number is high or the surface tension is large.Both the axisymmetric and the planar Newtonian extrudate-swell problems are solved using the standard and the singular finite element methods. In the latter method, special elements that incorporate the radial form of the stress singularity are used around the exit of the die. The convergence of each of the two methods with mesh refinement is studied for various values of the Reynolds and the capillary numbers. The numerical results show that the singular finite elements perform well if coarse or moderately refined meshes are used, and appear to be superior to the standard finite elements only when the Reynolds number is low and the surface tension is not large. The standard finite elements perform better as the surface tension or the Reynolds number are increased. This implies that the effect of the stress singularity on the accuracy of the numerical solution in the neighborhood of the die exit becomes less significant when the Reynolds number is high or the surface tension is large. en
heal.publisher John Wiley & Sons Ltd, Chichester, United Kingdom en
heal.journalName International Journal for Numerical Methods in Fluids en
dc.identifier.doi 10.1002/(SICI)1097-0363(19990215)29:3<363::AID-FLD792>3.0.CO;2-D en
dc.identifier.isi ISI:000078525700006 en
dc.identifier.volume 29 en
dc.identifier.issue 3 en
dc.identifier.spage 363 en
dc.identifier.epage 371 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής