dc.contributor.author |
Katsanos, NA |
en |
dc.contributor.author |
De Santis, F |
en |
dc.contributor.author |
Cordoba, A |
en |
dc.contributor.author |
Roubani-Kalantzopoulou, F |
en |
dc.contributor.author |
Pasella, D |
en |
dc.date.accessioned |
2014-03-01T01:14:29Z |
|
dc.date.available |
2014-03-01T01:14:29Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
03043894 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13100 |
|
dc.subject |
Cultural heritage |
en |
dc.subject |
Flat denuder |
en |
dc.subject |
Pollutant deposition |
en |
dc.subject |
Reaction probability |
en |
dc.subject |
Synergistic effect |
en |
dc.subject.other |
Gas phase reactions |
en |
dc.subject.other |
Physicochemical deposition parameters |
en |
dc.subject.other |
Synergistic effects |
en |
dc.subject.other |
Corrosion |
en |
dc.subject.other |
Deposition |
en |
dc.subject.other |
Museums |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Rate constants |
en |
dc.subject.other |
Indoor air pollution |
en |
dc.subject.other |
hydrocarbon |
en |
dc.subject.other |
nitrogen dioxide |
en |
dc.subject.other |
corrosion |
en |
dc.subject.other |
pollutant |
en |
dc.subject.other |
air pollutant |
en |
dc.subject.other |
article |
en |
dc.subject.other |
chemical interaction |
en |
dc.subject.other |
corrosion |
en |
dc.subject.other |
cultural anthropology |
en |
dc.subject.other |
environment |
en |
dc.subject.other |
gas |
en |
dc.subject.other |
gas chromatography |
en |
dc.subject.other |
indoor air pollution |
en |
dc.subject.other |
information center |
en |
dc.subject.other |
physical chemistry |
en |
dc.subject.other |
Adsorption |
en |
dc.subject.other |
Air Pollutants |
en |
dc.subject.other |
Air Pollution, Indoor |
en |
dc.subject.other |
Art |
en |
dc.subject.other |
Calcium Carbonate |
en |
dc.subject.other |
Ceramics |
en |
dc.subject.other |
Chemistry, Physical |
en |
dc.subject.other |
Chromatography, Gas |
en |
dc.subject.other |
Computer Simulation |
en |
dc.subject.other |
Corrosion |
en |
dc.subject.other |
Culture |
en |
dc.subject.other |
Gases |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Models, Chemical |
en |
dc.subject.other |
Museums |
en |
dc.subject.other |
Nitrous Acid |
en |
dc.subject.other |
Oxidation-Reduction |
en |
dc.subject.other |
Pigments, Biological |
en |
dc.subject.other |
Protective Agents |
en |
dc.subject.other |
Software |
en |
dc.subject.other |
Sulfur Dioxide |
en |
dc.subject.other |
Surface Properties |
en |
dc.subject.other |
Della |
en |
dc.title |
Corrosive effects from the deposition of gaseous pollutants on surfaces of cultural and artistic value inside museums |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0304-3894(98)00241-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0304-3894(98)00241-6 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
The objectives of the project were to assess the critical relationships between environmental factors and damage of the artefacts and other cultural property exposed inside museums, by studying: (a) the outdoor/indoor pollutant concentration and their transfer inside the museum; (b) the distribution and circulation of pollutants inside the museum influenced by various factors; (c) chemical interactions between pollutants in the gas phase leading to removal and/or formation of secondary pollutants; (d) the final deposition of the indoor pollutants on surfaces of artistic interest and the damage on them, governed by strictly defined physicochemical parameters. All the above information, together with the main factors influencing each stage, were obtained by applying the methodology developed and described in detail here. Measurements of rate constants of reactions in the gas phase, of physicochemical deposition parameters on artefacts, and the synergistic effects of pollutants on the deposition parameters, were conducted. Seven PC programmes for analysing the experimental data were written and used. The pollutants, the solid materials and the museums chosen in this programme are only examples needed to develop the necessary methodology. The numerical results obtained serve the purpose of exemplifying the procedures and not enriching the world's bibliography with useless empirical information. Two commercially available protectives for marble were investigated from the point of view of their reactivity towards SO2 by using a diffusional technique. From measurements of SO2 concentration carried out on three types of marble, the deposition velocities have been calculated. Indoor monitoring of the church of San Luigi dei Francesi and of the Museo della Civilta Romana in Rome has shown that indoor production of nitrous acid most likely results from heterogeneous reactions indoors, on the walls and the exposed surfaces. Copyright (C) 1999 Elsevier Science B.V. |
en |
heal.journalName |
Journal of Hazardous Materials |
en |
dc.identifier.doi |
10.1016/S0304-3894(98)00241-6 |
en |
dc.identifier.volume |
64 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
21 |
en |
dc.identifier.epage |
36 |
en |