dc.contributor.author |
Huang, C-H |
en |
dc.contributor.author |
Ioannou, PA |
en |
dc.contributor.author |
Maroulas, J |
en |
dc.contributor.author |
Safonov, MG |
en |
dc.date.accessioned |
2014-03-01T01:14:30Z |
|
dc.date.available |
2014-03-01T01:14:30Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0018-9286 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13108 |
|
dc.subject |
Adaptive control |
en |
dc.subject |
H∞ control |
en |
dc.subject |
Linear matrix inequality |
en |
dc.subject |
Output feedback |
en |
dc.subject |
Positive real functions |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
THEOREM |
en |
dc.title |
Design of strictly positive real systems using constant output feedback |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/9.751352 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/9.751352 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
In this paper, the authors present a linear matrix inequality (LMI) approach to the strictly positive real (SPR) synthesis problem: find an output feedback K such that the closed-loop system T(s) is SPR. The authors establish that if no such constant output feedback K exists, then no dynamic output feedback with a proper transfer matrix exists to make the closed-loop system SPR. The existence of K to guarantee the SPR property of the closed-loop system is used to develop an adaptive control scheme that can stabilize any system of arbitrary unknown order and unknown parameters. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Automatic Control |
en |
dc.identifier.doi |
10.1109/9.751352 |
en |
dc.identifier.isi |
ISI:000079081600015 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
569 |
en |
dc.identifier.epage |
573 |
en |