dc.contributor.author |
Kounadis, AN |
en |
dc.contributor.author |
Gantes, CJ |
en |
dc.contributor.author |
Bolotin, VV |
en |
dc.date.accessioned |
2014-03-01T01:14:32Z |
|
dc.date.available |
2014-03-01T01:14:32Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0020-7225 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13131 |
|
dc.subject |
Dissipative Structure |
en |
dc.subject |
Dynamic Instability |
en |
dc.subject |
Equilibrium State |
en |
dc.subject |
Nonlinear Dynamics |
en |
dc.subject |
Numerical Integration |
en |
dc.subject |
Multi Degree of Freedom |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.other |
Buckling |
en |
dc.subject.other |
Degrees of freedom (mechanics) |
en |
dc.subject.other |
Dynamic loads |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Dynamic buckling loads (DBL) |
en |
dc.subject.other |
Structural analysis |
en |
dc.title |
Dynamic buckling loads of autonomous potential systems based on the geometry of the energy surface |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0020-7225(98)00136-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0020-7225(98)00136-0 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
Nonlinear dynamic buckling of imperfection sensitive multi-degree-of-freedom (MDOF), autonomous, non-dissipative structural systems is investigated both qualitatively and quantitatively. Attention is focused on the global dynamic instability of that equilibrium state on the locally stable primary path which at a certain level of the load becomes globally unstable. This is associated with an escaped motion through the saddle (or its neighborhood with very small negative V) that corresponds to the dynamic buckling load (DBL). Such a load is closely related to the geometry of the total potential surface V in the V-displacement space. The position of the starting point of motion relative to the locally stable equilibrium and the corresponding saddle as well as the width of the zero energy curve V=0 at the saddle are directly associated with the DBL. Thus, one can avoid the numerical integration of the highly nonlinear field equations associated quite often with large time Solutions which are difficult to obtain. The efficiency and reliability of the readily applied method is comprehensively demonstrated through two mechanical models. (C) 1999 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
Elsevier Science Ltd, Exeter, United Kingdom |
en |
heal.journalName |
International Journal of Engineering Science |
en |
dc.identifier.doi |
10.1016/S0020-7225(98)00136-0 |
en |
dc.identifier.isi |
ISI:000082372700006 |
en |
dc.identifier.volume |
37 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
1611 |
en |
dc.identifier.epage |
1628 |
en |