dc.contributor.author |
Malomed, BA |
en |
dc.contributor.author |
Frantzeskakis, DJ |
en |
dc.contributor.author |
Nistazakis, HE |
en |
dc.contributor.author |
Tsigopoulos, A |
en |
dc.contributor.author |
Hizanidis, K |
en |
dc.date.accessioned |
2014-03-01T01:14:32Z |
|
dc.date.available |
2014-03-01T01:14:32Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0281-1847 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13133 |
|
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.other |
NONLINEAR SCHRODINGER-EQUATION |
en |
dc.subject.other |
OPTICAL FIBERS |
en |
dc.subject.other |
PROPAGATION |
en |
dc.subject.other |
WAVELENGTH |
en |
dc.subject.other |
PULSES |
en |
dc.subject.other |
POINT |
en |
dc.subject.other |
WAVES |
en |
dc.title |
Dynamics of Pereira-Stenflo Solitons in the Presence of Third-Order Dispersion |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1238/Physica.Topical.082a00036 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1238/Physica.Topical.082a00036 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
Evolution of a solitary pulse in the cubic complex Ginzburg-Landau (CGL) equation, including third-order dispersion (TOD) as a small perturbation, is studied in detail. Starting from the exact Pereira-Stenflo soliton solution, we develop analytical approximations which yield an effective velocity c of the pulse induced by TOD. The analytical predictions are compared to direct numerical simulations, showing acceptable agreement at small values of the TOD parameter, provided that the second-order dispersion coefficient D takes values D > -3/2 or D < -30 (very different analytical approximations are used in these two cases). Between these regions, the numerically found dependence c(D) shows a very steep jump at D congruent to -3/2, and a less steep jump in the opposite direction at -30 < D < -20, each jump changing the sign of the velocity. The simulations also demonstrate that there is a maximum of the laminar propagation distance (before the onset of the ultimate turbulent stage) attained at D congruent to -18. The action of the sliding-frequency filtering on the soliton dynamics is also investigated numerically, and it is found that it slightly increases the laminar propagation distance. |
en |
heal.publisher |
ROYAL SWEDISH ACAD SCIENCES |
en |
heal.journalName |
Physica Scripta T |
en |
dc.identifier.doi |
10.1238/Physica.Topical.082a00036 |
en |
dc.identifier.isi |
ISI:000082593500010 |
en |
dc.identifier.volume |
82 |
en |
dc.identifier.spage |
36 |
en |
dc.identifier.epage |
41 |
en |