HEAL DSpace

Existence and Relaxation Theorems for Nonlinear Multivalued Boundary Value Problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Avgerinos, EP en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:14:35Z
dc.date.available 2014-03-01T01:14:35Z
dc.date.issued 1999 en
dc.identifier.issn 0095-4616 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13164
dc.subject Coercive operator en
dc.subject Compact embedding en
dc.subject Continuous selection en
dc.subject Extremal solution en
dc.subject Integration by parts en
dc.subject Leray-Schauder principle en
dc.subject Maximal monotone operator en
dc.subject Strong relaxation en
dc.subject Weak norm en
dc.subject.classification Mathematics, Applied en
dc.subject.other Integration en
dc.subject.other Mathematical operators en
dc.subject.other Theorem proving en
dc.subject.other Leray-Schauder principle en
dc.subject.other Maximal monotone operator en
dc.subject.other Relaxation theorem en
dc.subject.other Boundary value problems en
dc.title Existence and Relaxation Theorems for Nonlinear Multivalued Boundary Value Problems en
heal.type journalArticle en
heal.identifier.primary 10.1007/s002459900106 en
heal.identifier.secondary http://dx.doi.org/10.1007/s002459900106 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract In this paper we consider a general nonlinear boundary value problem for second-order differential inclusions. We prove two existence theorems, one for the ""convex"" problem and the other for the ""nonconvex"" problem. Then we show that the solution set of the latter is dense in the C1(T, RN)-norm to the solution set of the former (relaxation theorem). Subsequently for a Dirichlet boundary value problem we prove the existence of extremal solutions and we show that they are dense in the solutions of the convexified problem for the C1(T, RN)-norm. Our tools come from multivalued analysis and the theory of monotone operators and our proofs are based on the Leray-Schauder principle. en
heal.publisher SPRINGER VERLAG en
heal.journalName Applied Mathematics and Optimization en
dc.identifier.doi 10.1007/s002459900106 en
dc.identifier.isi ISI:000077519400005 en
dc.identifier.volume 39 en
dc.identifier.issue 2 en
dc.identifier.spage 257 en
dc.identifier.epage 279 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής