dc.contributor.author |
Avgerinos, EP |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:14:35Z |
|
dc.date.available |
2014-03-01T01:14:35Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0095-4616 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13164 |
|
dc.subject |
Coercive operator |
en |
dc.subject |
Compact embedding |
en |
dc.subject |
Continuous selection |
en |
dc.subject |
Extremal solution |
en |
dc.subject |
Integration by parts |
en |
dc.subject |
Leray-Schauder principle |
en |
dc.subject |
Maximal monotone operator |
en |
dc.subject |
Strong relaxation |
en |
dc.subject |
Weak norm |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Integration |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Leray-Schauder principle |
en |
dc.subject.other |
Maximal monotone operator |
en |
dc.subject.other |
Relaxation theorem |
en |
dc.subject.other |
Boundary value problems |
en |
dc.title |
Existence and Relaxation Theorems for Nonlinear Multivalued Boundary Value Problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s002459900106 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s002459900106 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
In this paper we consider a general nonlinear boundary value problem for second-order differential inclusions. We prove two existence theorems, one for the ""convex"" problem and the other for the ""nonconvex"" problem. Then we show that the solution set of the latter is dense in the C1(T, RN)-norm to the solution set of the former (relaxation theorem). Subsequently for a Dirichlet boundary value problem we prove the existence of extremal solutions and we show that they are dense in the solutions of the convexified problem for the C1(T, RN)-norm. Our tools come from multivalued analysis and the theory of monotone operators and our proofs are based on the Leray-Schauder principle. |
en |
heal.publisher |
SPRINGER VERLAG |
en |
heal.journalName |
Applied Mathematics and Optimization |
en |
dc.identifier.doi |
10.1007/s002459900106 |
en |
dc.identifier.isi |
ISI:000077519400005 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
257 |
en |
dc.identifier.epage |
279 |
en |