dc.contributor.author |
Kirwan, P |
en |
dc.contributor.author |
Sarantopoulos, Y |
en |
dc.contributor.author |
Tonge, AM |
en |
dc.date.accessioned |
2014-03-01T01:14:40Z |
|
dc.date.available |
2014-03-01T01:14:40Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0021-9045 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13172 |
|
dc.subject |
normed space |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
Extremal Homogeneous Polynomials on Real Normed Spaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/jath.1996.3273 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/jath.1996.3273 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
If P is a continuous nz-homogeneous polynomial on a real normed space and P is the associated symmetric m-linear form, the ratio \\P\\/\\P\\ always lies between 1 and m(m)/m!. We show that, as in the complex case investigated by Sarantopoulos (1987, Proc. Amer. Math. Sec. 99, 340-346), there are P's for which \\P\\/\\P\\= m(m)/m! and for which ??P achieves norm if and only if the normed space contains an isometric copy of l(1)(m). However, unlike the complex case, we find a plentiful supply of such polynomials provided m greater than or equal to 4. (C) 1999 Academic Press. |
en |
heal.publisher |
ACADEMIC PRESS INC |
en |
heal.journalName |
Journal of Approximation Theory |
en |
dc.identifier.doi |
10.1006/jath.1996.3273 |
en |
dc.identifier.isi |
ISI:000079587200001 |
en |
dc.identifier.volume |
97 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
201 |
en |
dc.identifier.epage |
213 |
en |