dc.contributor.author |
Pigounakis, KG |
en |
dc.contributor.author |
Kaklis, PD |
en |
dc.date.accessioned |
2014-03-01T01:14:40Z |
|
dc.date.available |
2014-03-01T01:14:40Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0169-121X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13173 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-0032632169&partnerID=40&md5=b3648dbd96edba808a74ea08284cfddc |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer aided design |
en |
dc.subject.other |
Design |
en |
dc.subject.other |
Splines |
en |
dc.subject.other |
Two dimensional |
en |
dc.subject.other |
Nonlinear constrained minimization |
en |
dc.subject.other |
Curve fitting |
en |
dc.title |
Fairing of 2D B-splines under design constraints |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
The paper proposes a method for fairing planar B-splines under design conditions that frequently occur in the CAD practice, namely end, tolerance, area, moments-of-area and local-convexity conditions. The formulation of the problem is classified in non-linear constrained minimization. The control vertices of the curve to be faired are the free variables of the problem, which is numerically solved with the aid of the Sequential-Quadratic-Programming technique. The performance of the implemented algorithm is tested and discussed in the context of a ship-design example. © VSP 1998. |
en |
heal.publisher |
VSP BV |
en |
heal.journalName |
Mathematical Engineering in Industry |
en |
dc.identifier.isi |
ISI:000078539300005 |
en |
dc.identifier.volume |
7 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
165 |
en |
dc.identifier.epage |
178 |
en |