dc.contributor.author | Chaloulakou, A | en |
dc.contributor.author | Assimacopoulos, D | en |
dc.contributor.author | Lekkas, T | en |
dc.date.accessioned | 2014-03-01T01:14:41Z | |
dc.date.available | 2014-03-01T01:14:41Z | |
dc.date.issued | 1999 | en |
dc.identifier.issn | 0167-6369 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/13178 | |
dc.subject | Air pollution in Athens | en |
dc.subject | Ozone concentration | en |
dc.subject | Prediction of episodes | en |
dc.subject | Statistical modelling | en |
dc.subject.classification | Environmental Sciences | en |
dc.subject.other | Daily maximum ozone concentrations | en |
dc.subject.other | Forecasting | en |
dc.subject.other | Mathematical models | en |
dc.subject.other | Ozone | en |
dc.subject.other | Regression analysis | en |
dc.subject.other | Wind effects | en |
dc.subject.other | Air pollution | en |
dc.subject.other | ozone | en |
dc.subject.other | atmospheric pollution | en |
dc.subject.other | forecasting method | en |
dc.subject.other | ozone | en |
dc.subject.other | prediction | en |
dc.subject.other | accuracy | en |
dc.subject.other | air monitoring | en |
dc.subject.other | air pollution | en |
dc.subject.other | article | en |
dc.subject.other | forecasting | en |
dc.subject.other | Greece | en |
dc.subject.other | model | en |
dc.subject.other | summer | en |
dc.subject.other | wind | en |
dc.title | Forecasting daily maximum ozone concentrations in the Athens Basin | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1023/A:1005943201063 | en |
heal.identifier.secondary | http://dx.doi.org/10.1023/A:1005943201063 | en |
heal.language | English | en |
heal.publicationDate | 1999 | en |
heal.abstract | In the work ozone data from the Liossion monitoring station of the Athens/PERPA network are analysed. Data cover the months May to September for the period 1987-93. Four statistical models, three multiple regression and one ARIMA (0,1,2), for the prediction of the daily maximum 1-hour ozone concentrations are developed. All models together, with a persistence forecast, are evaluated and compared with the 1993's data, not used in the models development. Validation statistics were used to assess the relative accuracy of models. Analysis, concerning the models' ability to forecast real ozone episodes, was also carried out. Two of the three regression models provide the most accurate forecasts. The ARIMA model had the worst performance, even lower than the persistence one. The forecast skill of a bivariate wind speed and persistence based regression model for ozone episode days was found to be quite satisfactory, with a detection rare of 73% and 60% for O-3 >180 mu g m(-3) and O-3 >200 mu g m(-3), respectively. | en |
heal.publisher | KLUWER ACADEMIC PUBL | en |
heal.journalName | Environmental Monitoring and Assessment | en |
dc.identifier.doi | 10.1023/A:1005943201063 | en |
dc.identifier.isi | ISI:000080228400006 | en |
dc.identifier.volume | 56 | en |
dc.identifier.issue | 1 | en |
dc.identifier.spage | 97 | en |
dc.identifier.epage | 112 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |