dc.contributor.author |
Cottis, PG |
en |
dc.contributor.author |
Vazouras, CN |
en |
dc.contributor.author |
Spyrou, C |
en |
dc.date.accessioned |
2014-03-01T01:14:42Z |
|
dc.date.available |
2014-03-01T01:14:42Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0018-926X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13185 |
|
dc.subject |
biaxial medium |
en |
dc.subject |
dyadic Green's function |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Fourier transforms |
en |
dc.subject.other |
Green's function |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Biaxial medium |
en |
dc.subject.other |
Helmholtz equation |
en |
dc.subject.other |
Electromagnetic wave propagation |
en |
dc.title |
Green's function for an unbounded biaxial medium in cylindrical coordinates |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/8.753010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/8.753010 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
The dyadic Green's function for an unbounded biaxial medium is treated analytically in the Fourier domain. The Green's function is initially expressed as a triple Fourier integral, which is next reduced to a double one by performing the integration over the longitudinal Fourier variable. A delta-type source term is extracted, which is dependent on the particular coordinate system. |
en |
heal.publisher |
IEEE, Piscataway, NJ, United States |
en |
heal.journalName |
IEEE Transactions on Antennas and Propagation |
en |
dc.identifier.doi |
10.1109/8.753010 |
en |
dc.identifier.isi |
ISI:000079495500025 |
en |
dc.identifier.volume |
47 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
195 |
en |
dc.identifier.epage |
199 |
en |