HEAL DSpace

Mixture Density Estimation Based on Maximum Likelihood and Sequential Test Statistics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlassis, NA en
dc.contributor.author Papakonstantinou, G en
dc.contributor.author Tsanakas, P en
dc.date.accessioned 2014-03-01T01:14:48Z
dc.date.available 2014-03-01T01:14:48Z
dc.date.issued 1999 en
dc.identifier.issn 1370-4621 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13230
dc.subject Gaussian mixtures en
dc.subject Nonstationary distributions en
dc.subject Number of mixing components en
dc.subject PNN en
dc.subject Semi-parametric estimation en
dc.subject Stationary distributions en
dc.subject Test statistics en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Neurosciences en
dc.subject.other Approximation theory en
dc.subject.other Iterative methods en
dc.subject.other Maximum likelihood estimation en
dc.subject.other Pattern recognition en
dc.subject.other Statistical tests en
dc.subject.other Time series analysis en
dc.subject.other Mixture density estimation en
dc.subject.other Sequential test statistics en
dc.subject.other Probability density function en
dc.title Mixture Density Estimation Based on Maximum Likelihood and Sequential Test Statistics en
heal.type journalArticle en
heal.identifier.primary 10.1023/A:1018624029058 en
heal.identifier.secondary http://dx.doi.org/10.1023/A:1018624029058 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract We address the problem of estimating an unknown probability density function from a sequence of input samples. We approximate the input density with a weighted mixture of a finite number of Gaussian kernels whose parameters and weights we estimate iteratively from the input samples using the Maximum Likelihood (ML) procedure. In order to decide on the correct total number of kernels we employ simple statistical tests involving the mean, variance, and the kurtosis, or fourth moment, of a particular kernel. We demonstrate the validity of our method in handling both pattern classification (stationary) and time series (nonstationary) problems. en
heal.publisher KLUWER ACADEMIC PUBL en
heal.journalName Neural Processing Letters en
dc.identifier.doi 10.1023/A:1018624029058 en
dc.identifier.isi ISI:000078809200007 en
dc.identifier.volume 9 en
dc.identifier.issue 1 en
dc.identifier.spage 63 en
dc.identifier.epage 76 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής