dc.contributor.author |
Vlassis, NA |
en |
dc.contributor.author |
Papakonstantinou, G |
en |
dc.contributor.author |
Tsanakas, P |
en |
dc.date.accessioned |
2014-03-01T01:14:48Z |
|
dc.date.available |
2014-03-01T01:14:48Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
1370-4621 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13230 |
|
dc.subject |
Gaussian mixtures |
en |
dc.subject |
Nonstationary distributions |
en |
dc.subject |
Number of mixing components |
en |
dc.subject |
PNN |
en |
dc.subject |
Semi-parametric estimation |
en |
dc.subject |
Stationary distributions |
en |
dc.subject |
Test statistics |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Neurosciences |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Iterative methods |
en |
dc.subject.other |
Maximum likelihood estimation |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Statistical tests |
en |
dc.subject.other |
Time series analysis |
en |
dc.subject.other |
Mixture density estimation |
en |
dc.subject.other |
Sequential test statistics |
en |
dc.subject.other |
Probability density function |
en |
dc.title |
Mixture Density Estimation Based on Maximum Likelihood and Sequential Test Statistics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1018624029058 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1018624029058 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
We address the problem of estimating an unknown probability density function from a sequence of input samples. We approximate the input density with a weighted mixture of a finite number of Gaussian kernels whose parameters and weights we estimate iteratively from the input samples using the Maximum Likelihood (ML) procedure. In order to decide on the correct total number of kernels we employ simple statistical tests involving the mean, variance, and the kurtosis, or fourth moment, of a particular kernel. We demonstrate the validity of our method in handling both pattern classification (stationary) and time series (nonstationary) problems. |
en |
heal.publisher |
KLUWER ACADEMIC PUBL |
en |
heal.journalName |
Neural Processing Letters |
en |
dc.identifier.doi |
10.1023/A:1018624029058 |
en |
dc.identifier.isi |
ISI:000078809200007 |
en |
dc.identifier.volume |
9 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
63 |
en |
dc.identifier.epage |
76 |
en |