dc.contributor.author |
Delibasis, KK |
en |
dc.contributor.author |
Mouravliansky, N |
en |
dc.contributor.author |
Matsopoulos, GK |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.contributor.author |
Marsh, A |
en |
dc.date.accessioned |
2014-03-01T01:14:51Z |
|
dc.date.available |
2014-03-01T01:14:51Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0167-739X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13247 |
|
dc.subject |
4D MR cardiac images |
en |
dc.subject |
K-means clustering algorithm |
en |
dc.subject |
fuzzy K-means (FKM) algorithm |
en |
dc.subject |
self-organizing maps (SOMs) |
en |
dc.subject |
seeded region growing algorithm |
en |
dc.subject |
sctive surface |
en |
dc.subject |
surface triangulation |
en |
dc.subject |
VRML 2.0 format |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computational geometry |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Image quality |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Virtual reality |
en |
dc.subject.other |
Visualization |
en |
dc.subject.other |
World Wide Web |
en |
dc.subject.other |
Magnetic resonance functional cardiac imaging |
en |
dc.subject.other |
Seeded region growing algorithms |
en |
dc.subject.other |
Self-organizing maps (SOM) |
en |
dc.subject.other |
Magnetic resonance imaging |
en |
dc.title |
MR functional cardiac imaging: Segmentation, measurement and WWW based visualization of 4D data |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0167-739X(98)00062-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0167-739X(98)00062-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
This paper considers the problem of ventricular segmentation and visualisation from dynamic (4D) MR cardiac data covering an entire patient cardiac cycle, in a format that is compatible with the web. Four different methods are evaluated for the process of segmentation of the objects of interest: The K-means clustering algorithm, the fuzzy K-means (FKM) algorithm, self-organizing maps (SOMs) and seeded region growing algorithm. The technique of active surface is then subsequently applied to refine the segmentation results, employing a deformable generalised cylinder as geometric primitive. The final ventricular models are presented in VRML 2.0 format. The same process is repeated for all the 3D volumes of the cardiac cycle. The radial displacement between end systole and end diastole is calculated for each point of the active surface and is encoded in colour on the VRML vertex, using the RGB colour model. Using the VRML 2.0 specifications, morphing is performed showing all cardiac phases in real time. The expert has the ability to view the objects and interact with them using a simple internet browser. Preliminary results of normal and abnormal cases indicate that very important pathological situations (such as infarction) can be visualised and thus easily diagnosed and localised with the assistance of the proposed technique. (C) 1999 Elsevier Science B.V. All rights reserved. |
en |
heal.publisher |
Elsevier Science Publishers B.V. |
en |
heal.journalName |
Future Generation Computer Systems |
en |
dc.identifier.doi |
10.1016/S0167-739X(98)00062-4 |
en |
dc.identifier.isi |
ISI:000079390300005 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
185 |
en |
dc.identifier.epage |
193 |
en |