HEAL DSpace

MR functional cardiac imaging: Segmentation, measurement and WWW based visualization of 4D data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Delibasis, KK en
dc.contributor.author Mouravliansky, N en
dc.contributor.author Matsopoulos, GK en
dc.contributor.author Nikita, KS en
dc.contributor.author Marsh, A en
dc.date.accessioned 2014-03-01T01:14:51Z
dc.date.available 2014-03-01T01:14:51Z
dc.date.issued 1999 en
dc.identifier.issn 0167-739X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13247
dc.subject 4D MR cardiac images en
dc.subject K-means clustering algorithm en
dc.subject fuzzy K-means (FKM) algorithm en
dc.subject self-organizing maps (SOMs) en
dc.subject seeded region growing algorithm en
dc.subject sctive surface en
dc.subject surface triangulation en
dc.subject VRML 2.0 format en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Algorithms en
dc.subject.other Computational geometry en
dc.subject.other Fuzzy sets en
dc.subject.other Image analysis en
dc.subject.other Image quality en
dc.subject.other Image segmentation en
dc.subject.other Virtual reality en
dc.subject.other Visualization en
dc.subject.other World Wide Web en
dc.subject.other Magnetic resonance functional cardiac imaging en
dc.subject.other Seeded region growing algorithms en
dc.subject.other Self-organizing maps (SOM) en
dc.subject.other Magnetic resonance imaging en
dc.title MR functional cardiac imaging: Segmentation, measurement and WWW based visualization of 4D data en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0167-739X(98)00062-4 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0167-739X(98)00062-4 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract This paper considers the problem of ventricular segmentation and visualisation from dynamic (4D) MR cardiac data covering an entire patient cardiac cycle, in a format that is compatible with the web. Four different methods are evaluated for the process of segmentation of the objects of interest: The K-means clustering algorithm, the fuzzy K-means (FKM) algorithm, self-organizing maps (SOMs) and seeded region growing algorithm. The technique of active surface is then subsequently applied to refine the segmentation results, employing a deformable generalised cylinder as geometric primitive. The final ventricular models are presented in VRML 2.0 format. The same process is repeated for all the 3D volumes of the cardiac cycle. The radial displacement between end systole and end diastole is calculated for each point of the active surface and is encoded in colour on the VRML vertex, using the RGB colour model. Using the VRML 2.0 specifications, morphing is performed showing all cardiac phases in real time. The expert has the ability to view the objects and interact with them using a simple internet browser. Preliminary results of normal and abnormal cases indicate that very important pathological situations (such as infarction) can be visualised and thus easily diagnosed and localised with the assistance of the proposed technique. (C) 1999 Elsevier Science B.V. All rights reserved. en
heal.publisher Elsevier Science Publishers B.V. en
heal.journalName Future Generation Computer Systems en
dc.identifier.doi 10.1016/S0167-739X(98)00062-4 en
dc.identifier.isi ISI:000079390300005 en
dc.identifier.volume 15 en
dc.identifier.issue 2 en
dc.identifier.spage 185 en
dc.identifier.epage 193 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής