HEAL DSpace

Multiscale morphological segmentations based on watershed, flooding, and eikonal PDE

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Meyer, F en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:14:51Z
dc.date.available 2014-03-01T01:14:51Z
dc.date.issued 1999 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13250
dc.subject Curve Evolution en
dc.subject Minimum Distance en
dc.subject Watershed Transform en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other ALGORITHM en
dc.subject.other DISTANCE en
dc.title Multiscale morphological segmentations based on watershed, flooding, and eikonal PDE en
heal.type journalArticle en
heal.identifier.primary 10.1007/3-540-48236-9_31 en
heal.identifier.secondary http://dx.doi.org/10.1007/3-540-48236-9_31 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract The classical morphological segmentation paradigm is based on the watershed transform, constructed by flooding the gradient image seen as a topographic surface. For flooding a topographic surface, a topographic distance is defined from which a minimum distance algorithm is derived for the watershed. In a continuous formulation, this is modeled via the eikonal PDE, which can be solved using curve evolution algorithms. Various ultrametric distances between the catchment basins may then be associated to the flooding itself. To each ultrametric distance is associated a multiscale segmentation; each scale being the closed balls of the ultrametric distance. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName SCALE-SPACE THEORIES IN COMPUTER VISION en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/3-540-48236-9_31 en
dc.identifier.isi ISI:000170515400031 en
dc.identifier.volume 1682 en
dc.identifier.spage 351 en
dc.identifier.epage 362 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής