dc.contributor.author |
Arseni-Benou, K |
en |
dc.contributor.author |
Halidias, N |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:14:53Z |
|
dc.date.available |
2014-03-01T01:14:53Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
10489533 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13262 |
|
dc.subject |
Feedback Control System |
en |
dc.subject |
Parabolic Equation |
en |
dc.subject |
Path-Connected |
en |
dc.subject |
Strong Relaxation |
en |
dc.subject |
Strong Solution |
en |
dc.subject |
Subdifferential |
en |
dc.title |
Nonconvex evolution inclusions generated by time-dependent subdifferential operators |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/S1048953399000222 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/S1048953399000222 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
We consider nonlinear nonconvex evolution inclusions driven by time-varying subdifferentials ∂φ(t, x) without assuming that φ(t, ·) is of compact type. We show the existence of extremal solutions and then we prove a strong relaxation theorem. Moreover,r we show that under a Lipschitz condition on the orientor field, the solution set of the nonconvex problem is path-connected in C(T, H). These results are applied to nonlinear feedback control systems to derive nonlinear infinite dimensional versions of the ""bang-bang principle."" The abstract results are illustrated by two examples of nonlinear parabolic problems and an example of a differential variational inequality. ©1999 by North Atlantic Science Publishing Company. |
en |
heal.journalName |
Journal of Applied Mathematics and Stochastic Analysis |
en |
dc.identifier.doi |
10.1155/S1048953399000222 |
en |
dc.identifier.volume |
12 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
233 |
en |
dc.identifier.epage |
252 |
en |