dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Yannakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:14:53Z |
|
dc.date.available |
2014-03-01T01:14:53Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0253-4142 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13263 |
|
dc.subject |
Compact embedding |
en |
dc.subject |
Demicontinuous operator |
en |
dc.subject |
Leray-Schauder principle |
en |
dc.subject |
Maximal monotone operator |
en |
dc.subject |
Monotone operator |
en |
dc.subject |
Periodic problem |
en |
dc.subject |
Sobolev space |
en |
dc.subject |
Surjective operator |
en |
dc.subject |
Weakly coercive operator |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
PERIODIC-SOLUTIONS |
en |
dc.subject.other |
FORCED LIENARD |
en |
dc.subject.other |
RESONANCE |
en |
dc.subject.other |
EQUATIONS |
en |
dc.title |
Nonlinear boundary value problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02841535 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02841535 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
In this paper we consider two quasilinear boundary value problems. The first is vector valued and has periodic boundary conditions. The second is scalar valued with nonlinear boundary conditions determined by multivalued maximal monotone maps. Using the theory of maximal monotone operators for reflexive Banach spaces and the Leray-Schauder principle we establish the existence of solutions for both problems. |
en |
heal.publisher |
INDIAN ACADEMY SCIENCES |
en |
heal.journalName |
Proceedings of the Indian Academy of Sciences: Mathematical Sciences |
en |
dc.identifier.doi |
10.1007/BF02841535 |
en |
dc.identifier.isi |
ISI:000080336200004 |
en |
dc.identifier.volume |
109 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
211 |
en |
dc.identifier.epage |
230 |
en |