dc.contributor.author |
Hu, S |
en |
dc.contributor.author |
Kourogenis, NC |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:14:53Z |
|
dc.date.available |
2014-03-01T01:14:53Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13264 |
|
dc.subject |
Compact embedding |
en |
dc.subject |
Critical point |
en |
dc.subject |
Locally Lipschitz functions |
en |
dc.subject |
Maximal monotone operators |
en |
dc.subject |
Mountain Pass Theorem |
en |
dc.subject |
Nonsmooth Palais-Smale condition |
en |
dc.subject |
Rayleigh quotient |
en |
dc.subject |
Subdifferential |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
FUNCTIONALS |
en |
dc.title |
Nonlinear Elliptic Eigenvalue Problems with Discontinuities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1006/jmaa.1999.6338 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1006/jmaa.1999.6338 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
In this paper we study the existence of solution for two different eigenvalue problems. The first is nonlinear and the second is semilinear. Our approach is based on results from the nonsmooth critical point theory. In the first theorem we prove the existence of at least two nontrivial solutions when lambda is in a half-axis. In the second theorem (based on a nonsmooth variant of the generalized mountain pass theorem), we prove the existence of at least one nontrivial solution for every lambda is an element of R. (C) 1999 Academic Press. |
en |
heal.publisher |
ACADEMIC PRESS INC |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1006/jmaa.1999.6338 |
en |
dc.identifier.isi |
ISI:000079951600026 |
en |
dc.identifier.volume |
233 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
406 |
en |
dc.identifier.epage |
424 |
en |