HEAL DSpace

Nonlinear PDEs and numerical algorithms for modeling levelings and reconstruction filters

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Maragos, P en
dc.contributor.author Meyer, F en
dc.date.accessioned 2014-03-01T01:14:53Z
dc.date.available 2014-03-01T01:14:53Z
dc.date.issued 1999 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13266
dc.subject Geometric Feature en
dc.subject Image Analysis en
dc.subject Large Classes en
dc.subject nonlinear pde en
dc.subject Numerical Algorithm en
dc.subject Numerical Solution en
dc.subject partial dierential equation en
dc.subject Scale Space en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other EQUATIONS en
dc.subject.other MORPHOLOGY en
dc.subject.other OPERATORS en
dc.subject.other EVOLUTION en
dc.subject.other AXIOMS en
dc.title Nonlinear PDEs and numerical algorithms for modeling levelings and reconstruction filters en
heal.type journalArticle en
heal.identifier.primary 10.1007/3-540-48236-9_32 en
heal.identifier.secondary http://dx.doi.org/10.1007/3-540-48236-9_32 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract In this paper we develop partial differential equations (PDEs) that model the generation of a large class of morphological filters, the levelings and the openings/closings by reconstruction. These types of filters are very useful in numerous image analysis and vision tasks ranging from enhancement, to geometric feature detection, to segmentation. The developed PDEs are nonlinear functions of the first spatial derivatives and model these nonlinear filters as the limit of a controlled growth starting from an initial seed signal. This growth is of the multiscale dilation or erosion type and the controlling mechanism is a switch that reverses the growth when the difference between the current evolution and a reference signal switches signs. We discuss theoretical aspects of these PDEs, propose discrete algorithms for their numerical solution and corresponding filter implementation, and provide insights via several experiments. Finally, we outline the use of these PDEs for improving the Gaussian scale-space by using the latter as initial seed to generate: multiscale levelings that have a superior preservation of image edges and boundaries. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName SCALE-SPACE THEORIES IN COMPUTER VISION en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.doi 10.1007/3-540-48236-9_32 en
dc.identifier.isi ISI:000170515400032 en
dc.identifier.volume 1682 en
dc.identifier.spage 363 en
dc.identifier.epage 374 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής