dc.contributor.author |
Georgiadis, HG |
en |
dc.contributor.author |
Vamvatsikos, D |
en |
dc.contributor.author |
Vardoulakis, I |
en |
dc.date.accessioned |
2014-03-01T01:14:53Z |
|
dc.date.available |
2014-03-01T01:14:53Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13268 |
|
dc.subject |
Exact Results |
en |
dc.subject |
Fourier Series |
en |
dc.subject |
Integral Transforms |
en |
dc.subject |
Laplace Transform |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Lamb's point-load problem |
en |
dc.subject.other |
Elasticity |
en |
dc.title |
Numerical implementation of the integral-transform solution to Lamb's point-load problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s004660050441 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s004660050441 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
The present work describes a procedure for the numerical evaluation of the classical integral-transform solution of the transient elastodynamic point-load (axisymmetric) Lamb's problem. This solution involves integrals of rapidly oscillatory functions over semi-infinite intervals and inversion of one-sided (time) Laplace transforms. These features introduce difficulties for a numerical treatment and constitute a challenging problem in trying to obtain results for quantities (e.g. displacements) in the interior of the half-space. To deal with the oscillatory integrands, which in addition may take very large values (pseudo-pole behavior) at certain points, we follow the concept of Longman's method but using as accelerator in the summation procedure a modified Epsilon algorithm instead of the standard Euler's transformation. Also, an adaptive procedure using the Gauss 32-point rule is introduced to integrate in the vicinity of the pseudo-pole. The numerical Laplace-transform inversion is based on the robust Fourier-series technique of Dubner/Abate-Crump-Durbin. Extensive results are given for sub-surface displacements, whereas the limit-case results for the surface displacements compare very favorably with previous exact results. |
en |
heal.publisher |
Springer-Verlag GmbH & Company KG, Berlin, Germany |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s004660050441 |
en |
dc.identifier.isi |
ISI:000082581800003 |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
90 |
en |
dc.identifier.epage |
99 |
en |