HEAL DSpace

Numerical implementation of the integral-transform solution to Lamb's point-load problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiadis, HG en
dc.contributor.author Vamvatsikos, D en
dc.contributor.author Vardoulakis, I en
dc.date.accessioned 2014-03-01T01:14:53Z
dc.date.available 2014-03-01T01:14:53Z
dc.date.issued 1999 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13268
dc.subject Exact Results en
dc.subject Fourier Series en
dc.subject Integral Transforms en
dc.subject Laplace Transform en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Integral equations en
dc.subject.other Laplace transforms en
dc.subject.other Problem solving en
dc.subject.other Lamb's point-load problem en
dc.subject.other Elasticity en
dc.title Numerical implementation of the integral-transform solution to Lamb's point-load problem en
heal.type journalArticle en
heal.identifier.primary 10.1007/s004660050441 en
heal.identifier.secondary http://dx.doi.org/10.1007/s004660050441 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract The present work describes a procedure for the numerical evaluation of the classical integral-transform solution of the transient elastodynamic point-load (axisymmetric) Lamb's problem. This solution involves integrals of rapidly oscillatory functions over semi-infinite intervals and inversion of one-sided (time) Laplace transforms. These features introduce difficulties for a numerical treatment and constitute a challenging problem in trying to obtain results for quantities (e.g. displacements) in the interior of the half-space. To deal with the oscillatory integrands, which in addition may take very large values (pseudo-pole behavior) at certain points, we follow the concept of Longman's method but using as accelerator in the summation procedure a modified Epsilon algorithm instead of the standard Euler's transformation. Also, an adaptive procedure using the Gauss 32-point rule is introduced to integrate in the vicinity of the pseudo-pole. The numerical Laplace-transform inversion is based on the robust Fourier-series technique of Dubner/Abate-Crump-Durbin. Extensive results are given for sub-surface displacements, whereas the limit-case results for the surface displacements compare very favorably with previous exact results. en
heal.publisher Springer-Verlag GmbH & Company KG, Berlin, Germany en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s004660050441 en
dc.identifier.isi ISI:000082581800003 en
dc.identifier.volume 24 en
dc.identifier.issue 2 en
dc.identifier.spage 90 en
dc.identifier.epage 99 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής