dc.contributor.author |
Kadianakis, N |
en |
dc.date.accessioned |
2014-03-01T01:14:55Z |
|
dc.date.available |
2014-03-01T01:14:55Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0044-2267 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13274 |
|
dc.subject |
Continuum Mechanics |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
NONLINEAR SOLID MECHANICS |
en |
dc.subject.other |
MATHEMATICAL ASPECTS |
en |
dc.subject.other |
DUAL VARIABLES |
en |
dc.subject.other |
PRINCIPLES |
en |
dc.title |
On the geometry of Lagrangian and Eulerian descriptions in continuum mechanics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/(SICI)1521-4001(199902)79:2<131::AID-ZAMM131>3.0.CO;2-Q |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/(SICI)1521-4001(199902)79:2<131::AID-ZAMM131>3.0.CO;2-Q |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
In this work we present a frame-independent and coordinate-free: approach to the Lagrangian and Eulerian descriptions of the motion of a continuum. Working on manifolds gives us the coordinate-free setting, while the use of classical spacte-time as the ambient space where the continuum moves gives the frame-independent description. This space-time has the minim um possible geometric structure, incorporating only the principle of absolute simultaneity. It does not assume any frames of reference given a priori. Any concept defined is therefore frame-independent. It is shown that many of the kinematical concepts can be defined, in this context. We present both Lagrangian and Eulcrian descriptions and show that many of the formulas concerning the classical relations between, the tensor fields in these two descriptions, hold in this more general framework. |
en |
heal.publisher |
WILEY-V C H VERLAG GMBH |
en |
heal.journalName |
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik |
en |
dc.identifier.doi |
10.1002/(SICI)1521-4001(199902)79:2<131::AID-ZAMM131>3.0.CO;2-Q |
en |
dc.identifier.isi |
ISI:000078798000006 |
en |
dc.identifier.volume |
79 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
131 |
en |
dc.identifier.epage |
138 |
en |