dc.contributor.author | Prastaro, A | en |
dc.contributor.author | Rassias, TM | en |
dc.date.accessioned | 2014-03-01T01:14:57Z | |
dc.date.available | 2014-03-01T01:14:57Z | |
dc.date.issued | 1999 | en |
dc.identifier.issn | 0764-4442 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/13279 | |
dc.subject.classification | Mathematics | en |
dc.title | On the set of solutions of the generalized d'Alembert equation | en |
heal.type | journalArticle | en |
heal.identifier.primary | 10.1016/S0764-4442(99)80177-3 | en |
heal.identifier.secondary | http://dx.doi.org/10.1016/S0764-4442(99)80177-3 | en |
heal.language | English | en |
heal.publicationDate | 1999 | en |
heal.abstract | The following results are been obtained: 1) The set Sol(d'A)(n) of all solutions of the equation partial derivative(n) log f/partial derivative x(n) ... partial derivative x(1) = 0, (n-d'Alembert equation), (n greater than or equal to 2), considered in domains of the (x(1),...,x(n)) is an element of R-n, is larger than the set of all functions f that can be represented in the form (sic), f(x(1),...,x(n)) = f(1)(x(2);x(3),...,x(n))... f(n) (x(1),x(2),..., x(n-1)). 2) In the set of solutions Sol(d'A)(n) of the n-d'Alembert equation, (d'A)(n) subset of JD(n)(R-n,R), there are also some manifolds that have a change of sectional topology (tunneling effect). (C) Academie des Sciences/Elsevier. Paris. | en |
heal.publisher | EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER | en |
heal.journalName | COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | en |
dc.identifier.doi | 10.1016/S0764-4442(99)80177-3 | en |
dc.identifier.isi | ISI:000078914200005 | en |
dc.identifier.volume | 328 | en |
dc.identifier.issue | 5 | en |
dc.identifier.spage | 389 | en |
dc.identifier.epage | 394 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |