dc.contributor.author |
Tsamasphyros, G |
en |
dc.contributor.author |
Theotokoglou, EE |
en |
dc.date.accessioned |
2014-03-01T01:15:02Z |
|
dc.date.available |
2014-03-01T01:15:02Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0178-7675 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13295 |
|
dc.subject |
Density Functional |
en |
dc.subject |
fredholm integral equation |
en |
dc.subject |
Numerical Solution |
en |
dc.subject |
Quadrature Rule |
en |
dc.subject |
Singular Integral Equation |
en |
dc.subject |
Stress Intensity Factor |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Integration |
en |
dc.subject.other |
Stress intensity factors |
en |
dc.subject.other |
Epsilon algorithms |
en |
dc.subject.other |
Pade approximants |
en |
dc.subject.other |
Singural integral equations |
en |
dc.subject.other |
Unknown density functions |
en |
dc.subject.other |
Integral equations |
en |
dc.title |
Pade approximants for the numerical solution of singular integral equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s004660050431 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s004660050431 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
A method for accelerating the convergence of the numerical solution of a singular integral equation, based on Pade Approximants, is given in this paper. At first the general form of the Pade Table and of the 'epsilon' algorithm are presented. Taking into consideration the classical quadrature method, based on the Gauss-Jacobi quadrature rule, an approximate formula is derived for the unknown density function of the Cauchy-type singular integral equation or of the equivalent Fredholm integral equation. In this formula applying the 'epsilon' algorithm to the solution for the stress intensity factors, the convergence is achieved after a few operations. The number of numerical operations required for the determination of stress intensity factors is considerable reduced, when compared to the number of operations required for a classical type of solution. Illustrative examples are given, indicating the efficiency of the method. |
en |
heal.publisher |
Springer-Verlag GmbH & Company KG, Berlin, Germany |
en |
heal.journalName |
Computational Mechanics |
en |
dc.identifier.doi |
10.1007/s004660050431 |
en |
dc.identifier.isi |
ISI:000081238800016 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
519 |
en |
dc.identifier.epage |
523 |
en |