dc.contributor.author |
Moyssides, PG |
en |
dc.date.accessioned |
2014-03-01T01:15:02Z |
|
dc.date.available |
2014-03-01T01:15:02Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0018-9464 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13300 |
|
dc.subject |
Electrodynamic impulse pendulum |
en |
dc.subject |
Field momentum |
en |
dc.subject |
Radiated electromagnetic energy |
en |
dc.subject |
Vacuum reaction force |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Electrodynamics |
en |
dc.subject.other |
Maxwell equations |
en |
dc.subject.other |
Pendulums |
en |
dc.subject.other |
Electromagnetic field momentum |
en |
dc.subject.other |
Electromagnetic impulse pendulum |
en |
dc.subject.other |
Vacuum reaction force |
en |
dc.subject.other |
Electromagnetic field theory |
en |
dc.title |
Pendulum experiments and the fundamental laws of electrodynamics |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/20.748854 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/20.748854 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
We utilize a more rigorous way to calculate the radiated electromagnetic energy and field momentum in electromagnetic impulse pendulum experiments previously carried out by various authors. We consider the impulse pendulum and the rest of the circuit as a magnetic dipole. Calculating the previous authors' wrongly defined vacuum reaction force Fvac, we prove that this force is not equal to the Lorentz force FL as they stated. Specifically, we prove that Fvac arising from the whole loop is always equal to zero. We also prove that the field momentum Pfield arising from the whole loop is always equal to zero. In addition we show that the momentum imparted to the impulse pendulum is not equal to Pfield as they claim, and that the field energy radiated by the impulse pendulum is not equal to (mv)c, where mv is the momentum of the pendulum. Therefore, we have proven that the previous analysis is incorrect and not physically valid. © 1999 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Magnetics |
en |
dc.identifier.doi |
10.1109/20.748854 |
en |
dc.identifier.isi |
ISI:000079022100007 |
en |
dc.identifier.volume |
35 |
en |
dc.identifier.issue |
2 PART 2 |
en |
dc.identifier.spage |
1060 |
en |
dc.identifier.epage |
1069 |
en |