HEAL DSpace

Performance of ceramic membranes at elevated pressure and temperature: Effect of non-ideal flow conditions in a pilot scale membrane separator

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koukou, MK en
dc.contributor.author Papayannakos, N en
dc.contributor.author Markatos, NC en
dc.contributor.author Bracht, M en
dc.contributor.author Van Veen, HM en
dc.contributor.author Roskam, A en
dc.date.accessioned 2014-03-01T01:15:03Z
dc.date.available 2014-03-01T01:15:03Z
dc.date.issued 1999 en
dc.identifier.issn 0376-7388 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13303
dc.subject Ceramic membranes en
dc.subject Microporous and porous membranes en
dc.subject Modelling en
dc.subject Modules en
dc.subject Non-ideal flow en
dc.subject.classification Engineering, Chemical en
dc.subject.classification Polymer Science en
dc.subject.other Ceramic materials en
dc.subject.other Computer simulation en
dc.subject.other Data reduction en
dc.subject.other High pressure effects in solids en
dc.subject.other High temperature effects en
dc.subject.other Mathematical models en
dc.subject.other Mechanical permeability en
dc.subject.other Porous materials en
dc.subject.other Separation en
dc.subject.other Silica en
dc.subject.other Ceramic membranes en
dc.subject.other Microporous membranes en
dc.subject.other Non-ideal flow conditions en
dc.subject.other Pilot scale membrane separators en
dc.subject.other Permselective membranes en
dc.subject.other silicon dioxide en
dc.subject.other article en
dc.subject.other ceramics en
dc.subject.other gas en
dc.subject.other mathematical model en
dc.subject.other membrane en
dc.subject.other membrane permeability en
dc.subject.other pressure en
dc.subject.other priority journal en
dc.subject.other simulation en
dc.subject.other temperature en
dc.title Performance of ceramic membranes at elevated pressure and temperature: Effect of non-ideal flow conditions in a pilot scale membrane separator en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0376-7388(98)00315-9 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0376-7388(98)00315-9 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract Microporous silica membrane manufacturing technology has been scaled-up and tubes with several hundred cm2 of membrane surface area have been prepared. Practical problems in applying high-temperature ceramic membrane technology, such as sealing and ceramic metal joining, have been solved successfully on pilot scale. Experiments show that membranes developed are capable of selectively separating hydrogen from a gas mixture containing hydrogen at elevated pressures and temperatures. Permselectivity values for H2/CH4 separation are as high as 28.The gas separation performance of membranes is influenced by the flow conditions at both the feed and permeate side of the membrane. Non-ideal flow conditions can decrease the separation efficiency and strongly influence the performance of ceramic membrane separators. By performing high-temperature high-pressure separation experiments and simulation of the non-ideal flow effects around the membrane, the influence of the flow effects is predicted.The operation of the pilot scale membrane separator is simulated by a two-dimensional, one-phase mathematical model which predicts the basic features of the separator from an engineering point of view. A comparison between the experimental data and the modelling results yields the conclusion that the dispersion model predicts much better the membrane separator performance than the simplified model which assumes plug flow on both sides of the membrane separator. Copyright (C) 1999 Elsevier Science B.V.Microporous silica membrane manufacturing technology has been scaled-up and tubes with several hundred cm2 of membrane surface area have been prepared. Practical problems in applying high-temperature ceramic membrane technology, such as sealing and ceramic metal joining, have been solved successfully on pilot scale. Experiments show that membranes developed are capable of selectively separating hydrogen from a gas mixture containing hydrogen at elevated pressures and temperatures. Permselectivity values for H2/CH4 separation are as high as 28. The gas separation performance of membranes is influenced by the flow conditions at both the feed and permeate side of the membrane. Non-ideal flow conditions can decrease the separation efficiency and strongly influence the performance of ceramic membrane separators. By performing high-temperature high-pressure separation experiments and simulation of the non-ideal flow effects around the membrane, the influence of the flow effects is predicted. The operation of the pilot scale membrane separator is simulated by a two-dimensional, one-phase mathematical model which predicts the basic features of the separator from an engineering point of view. A comparison between the experimental data and the modelling results yields the conclusion that the dispersion model predicts much better the membrane separator performance than the simplified model which assumes plug flow on both sides of the membrane separator. en
heal.publisher Elsevier Sci B.V., Amsterdam, Netherlands en
heal.journalName Journal of Membrane Science en
dc.identifier.doi 10.1016/S0376-7388(98)00315-9 en
dc.identifier.isi ISI:000078928200006 en
dc.identifier.volume 155 en
dc.identifier.issue 2 en
dc.identifier.spage 241 en
dc.identifier.epage 259 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής