dc.contributor.author |
Avgerinos, EP |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Yannakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:15:03Z |
|
dc.date.available |
2014-03-01T01:15:03Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0236-5294 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13304 |
|
dc.subject |
Periodic Solution |
en |
dc.subject |
Second Order |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
EXISTENCE THEOREMS |
en |
dc.title |
Periodic solutions for second order differential inclusions with nonconvex and unbounded multifunction |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1006644519896 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1006644519896 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
In this paper we consider a second order multivalued periodic boundary value problem with a nonconvex and unbounded orientor field (set-valued vector field). Using a directionally continuous selector, through its Filippov regularization we produce a convex-valued, bounded multifunction and with this as orientor field we introduce a new multivalued periodic problem. Using the Leray-Schauder principle, we solve the convex problem and then we show that its solutions also solve the original nonconvex problem. |
en |
heal.publisher |
AKADEMIAI KIADO |
en |
heal.journalName |
Acta Mathematica Hungarica |
en |
dc.identifier.doi |
10.1023/A:1006644519896 |
en |
dc.identifier.isi |
ISI:000081228600003 |
en |
dc.identifier.volume |
83 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
303 |
en |
dc.identifier.epage |
314 |
en |