HEAL DSpace

Phase structure of lattice SU(2)⊗US(1) three-dimensional gauge theory

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Farakos, K en
dc.contributor.author Mavromatos, NE en
dc.contributor.author McNeill, D en
dc.date.accessioned 2014-03-01T01:15:03Z
dc.date.available 2014-03-01T01:15:03Z
dc.date.issued 1999 en
dc.identifier.issn 05562821 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13307
dc.subject Gauge Theory en
dc.subject High Temperature Superconducting en
dc.subject Lattice Gauge Theory en
dc.subject Phase Diagram en
dc.subject Strong Coupling en
dc.subject Symmetry Breaking en
dc.subject Three Dimensional en
dc.subject kosterlitz thouless en
dc.subject non perturbative en
dc.title Phase structure of lattice SU(2)⊗US(1) three-dimensional gauge theory en
heal.type journalArticle en
heal.identifier.primary 10.1103/PhysRevD.59.034502 en
heal.identifier.secondary http://dx.doi.org/10.1103/PhysRevD.59.034502 en
heal.publicationDate 1999 en
heal.abstract We discuss a phase diagram for a relativistic SU(2)XUS(1) lattice gauge theory, with emphasis on the formation of a parity-invariant chiral condensate, in the case when the US(1) field is infinitely coupled, and the SU(2) field is moved away from infinite coupling by means of a strong-coupling expansion. We provide analytical arguments on the existence of (and partially derive) a critical line in coupling space, separating the phase of broken SU(2) symmetry from that where the symmetry is unbroken. We review unconventional (Kosterlitz-Thouless type) superconducting properties of the model, upon coupling it to external electromagnetic potentials. We discuss the role of instantons of the unbroken subgroup U(1) ∈ SU(2), in eventually destroying superconductivity under certain circumstances. The model may have applications to the theory of high-temperature superconductivity. In particular, we argue that in the regime of the couplings leading to the broken SU(2) phase, the model may provide an explanation on the appearance of a pseudogap phase, lying between the antiferromagnetic and the superconducting phases. In such a phase, a fermion mass gap appears in the theory, but there is no phase coherence, due to the Kosterlitz-Thouless mode of symmetry breaking. The absence of superconductivity in this phase is attributed to nonperturbative effects (instantons) of the gauge field U(1) ∈ SU(2). ©1999 The American Physical Society. en
heal.journalName Physical Review D - Particles, Fields, Gravitation and Cosmology en
dc.identifier.doi 10.1103/PhysRevD.59.034502 en
dc.identifier.volume 59 en
dc.identifier.issue 3 en
dc.identifier.spage 1 en
dc.identifier.epage 26 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής