dc.contributor.author |
Farakos, K |
en |
dc.contributor.author |
Mavromatos, NE |
en |
dc.contributor.author |
McNeill, D |
en |
dc.date.accessioned |
2014-03-01T01:15:03Z |
|
dc.date.available |
2014-03-01T01:15:03Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
05562821 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/13307 |
|
dc.subject |
Gauge Theory |
en |
dc.subject |
High Temperature Superconducting |
en |
dc.subject |
Lattice Gauge Theory |
en |
dc.subject |
Phase Diagram |
en |
dc.subject |
Strong Coupling |
en |
dc.subject |
Symmetry Breaking |
en |
dc.subject |
Three Dimensional |
en |
dc.subject |
kosterlitz thouless |
en |
dc.subject |
non perturbative |
en |
dc.title |
Phase structure of lattice SU(2)⊗US(1) three-dimensional gauge theory |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1103/PhysRevD.59.034502 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1103/PhysRevD.59.034502 |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
We discuss a phase diagram for a relativistic SU(2)XUS(1) lattice gauge theory, with emphasis on the formation of a parity-invariant chiral condensate, in the case when the US(1) field is infinitely coupled, and the SU(2) field is moved away from infinite coupling by means of a strong-coupling expansion. We provide analytical arguments on the existence of (and partially derive) a critical line in coupling space, separating the phase of broken SU(2) symmetry from that where the symmetry is unbroken. We review unconventional (Kosterlitz-Thouless type) superconducting properties of the model, upon coupling it to external electromagnetic potentials. We discuss the role of instantons of the unbroken subgroup U(1) ∈ SU(2), in eventually destroying superconductivity under certain circumstances. The model may have applications to the theory of high-temperature superconductivity. In particular, we argue that in the regime of the couplings leading to the broken SU(2) phase, the model may provide an explanation on the appearance of a pseudogap phase, lying between the antiferromagnetic and the superconducting phases. In such a phase, a fermion mass gap appears in the theory, but there is no phase coherence, due to the Kosterlitz-Thouless mode of symmetry breaking. The absence of superconductivity in this phase is attributed to nonperturbative effects (instantons) of the gauge field U(1) ∈ SU(2). ©1999 The American Physical Society. |
en |
heal.journalName |
Physical Review D - Particles, Fields, Gravitation and Cosmology |
en |
dc.identifier.doi |
10.1103/PhysRevD.59.034502 |
en |
dc.identifier.volume |
59 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
1 |
en |
dc.identifier.epage |
26 |
en |