HEAL DSpace

Point attractors and dynamic buckling of autonomous systems under step loading

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sophianopoulos, DS en
dc.date.accessioned 2014-03-01T01:15:04Z
dc.date.available 2014-03-01T01:15:04Z
dc.date.issued 1999 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/13315
dc.subject Autonomic System en
dc.subject Development Theory en
dc.subject Dynamic Response en
dc.subject Dynamic Stability en
dc.subject Fixed Point en
dc.subject Model Simulation en
dc.subject Non-linear Dynamical Systems en
dc.subject Non-linear Dynamics en
dc.subject Point of View en
dc.subject.classification Mechanics en
dc.subject.other Buckling en
dc.subject.other Computer simulation en
dc.subject.other Damping en
dc.subject.other Degrees of freedom (mechanics) en
dc.subject.other Dynamic response en
dc.subject.other Equations of motion en
dc.subject.other Mathematical models en
dc.subject.other System stability en
dc.subject.other Autonomous multi-degrees of freedom systems en
dc.subject.other Nonlinear dynamical systems en
dc.subject.other Point attractors en
dc.subject.other Structural analysis en
dc.title Point attractors and dynamic buckling of autonomous systems under step loading en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0020-7683(98)00249-2 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0020-7683(98)00249-2 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract In this study the dynamic response of autonomous mainly dissipative multi D.O.F. systems under step loading is re-examined. Based on the geometrical point of view of the theory of non-linear dynamical systems and the rapidly developing theory of attractors, the investigation focuses on limit point like systems, with snapping as their salient feature. It is found that dynamic buckling (through a saddle or its neighborhood), although leading to a large amplitude motion, may be associated with a point attractor response on the prebuckling fixed point, depending on the amount of damping considered in close conjunction with the motion channel geometry and the total potential characteristics of all (stable and complementary) equilibria. For such systems, only a straightforward fully non-linear dynamic analysis can provide valid information on the global dynamic stability, since the shape of the total potential hypersurface may become very complicated, rendering energy aspects practically not applicable. A 2-D.O.F. model, simulating an asymmetric suspended roof is comprehensively analyzed to capture the above findings, and a parametric investigation is carried out, revealing a variety of new dynamic response types and leading to a more accurate insight of the stability of motion in the large. (C) 1999 Elsevier Science Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/S0020-7683(98)00249-2 en
dc.identifier.isi ISI:000081880000002 en
dc.identifier.volume 36 en
dc.identifier.issue 35 en
dc.identifier.spage 5357 en
dc.identifier.epage 5385 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής